135
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Probabilistic Transition-Based Optimal Energy Transaction of a Non-Convex CHP-Microgrid during Generation and Load Uncertainty

&
Pages 1142-1155 | Received 19 Dec 2022, Accepted 08 Mar 2023, Published online: 03 Apr 2023

References

  • S. Karki, M. Kulkarni, M. D. Mann, and H. Salehfar, “Efficiency improvements through combined heat and power for on-site distributed generation technologies,” Cogener. Distrib. Gener. J., vol. 22, no. 3, pp. 16, 2007.
  • M. Haseeb et al., “Multi objective based framework for energy management of smart micro-grid,” IEEE Access, vol. 8, pp. 220302–220319, 2020. DOI: 10.1109/ACCESS.2020.3041473.
  • T. K. Panigrahi, S. Chowdhury, S. P. Chowdhury, N. Chakraborty, and Y. h Song, “Control & reliability issue of efficient microgrid operation using hybrid distributed energy resources,” presented at the 2006 IEEE PES Power Systems Conference and Exposition, Atlanta, Georgia, USA, pp. 797–802, 2006. DOI: 10.1109/PSCE.2006.296417.
  • B. Tudu, K. K. Mandal, and N. Chakraborty, “Optimal design and development of PV-wind-battery based nano-grid system: A field-on-laboratory demonstration,” Front. Energy, vol. 13, no. 2, pp. 269–283, Jun. 2019. DOI: 10.1007/s11708-018-0573-z.
  • A. Rezaee Jordehi, “Dynamic environmental‐economic load dispatch in grid‐connected microgrids with demand response programs considering the uncertainties of demand, renewable generation and market price,” Int. J. Numer. Modell., vol. 34, no. 1, Jan. 2021. DOI: 10.1002/jnm.2798.[Mismatch] [InsertedFromOnline
  • G. Zhang, Z. Shen, and L. Wang, “Online energy management for microgrids with CHP co-generation and energy storage,” IEEE Trans. Contr. Syst. Technol., vol. 28, no. 2, pp. 533–541, Mar. 2020. DOI: 10.1109/TCST.2018.2873193.
  • D. Giaouris et al., “A systems approach for management of microgrids considering multiple energy carriers, stochastic loads, forecasting and demand side response,” Appl. Energy, vol. 226, pp. 546–559, Sept. 2018. DOI: 10.1016/j.apenergy.2018.05.113.
  • M. Mehdinejad, B. Mohammadi-Ivatloo, and R. Dadashzadeh-Bonab, “Energy production cost minimization in a combined heat and power generation systems using cuckoo optimization algorithm,” Energy Eff., vol. 10, no. 1, pp. 81–96, Feb. 2017. DOI: 10.1007/s12053-016-9439-6.
  • M. Nazari-Heris, B. Mohammadi-Ivatloo, and G. B. Gharehpetian, “A comprehensive review of heuristic optimization algorithms for optimal combined heat and power dispatch from economic and environmental perspectives,” Renew. Sustain. Energy Rev., vol. 81, pp. 2128–2143, Jan. 2018. DOI: 10.1016/j.rser.2017.06.024.
  • E. Khorram and M. Jaberipour, “Harmony search algorithm for solving combined heat and power economic dispatch problems,” Energy Convers. Manage., vol. 52, no. 2, pp. 1550–1554, Feb. 2011. DOI: 10.1016/j.enconman.2010.10.017.
  • C. Jena, M. Basu, and C. K. Panigrahi, “Differential evolution with Gaussian mutation for combined heat and power economic dispatch,” Soft Comput., vol. 20, no. 2, pp. 681–688, Feb. 2016. DOI: 10.1007/s00500-014-1531-2.
  • M. Basu, “Combined heat and power economic emission dispatch using nondominated sorting genetic algorithm-II,” Int. J. Electr. Power Energy Syst., vol. 53, pp. 135–141, Dec. 2013. DOI: 10.1016/j.ijepes.2013.04.014.
  • H. R. Abdolmohammadi and A. Kazemi, “A benders decomposition approach for a combined heat and power economic dispatch,” Energy Convers. Manage., vol. 71, pp. 21–31, Jul. 2013. DOI: 10.1016/j.enconman.2013.03.013.
  • M. I. Alomoush, “Application of the stochastic fractal search algorithm and compromise programming to combined heat and power economic–emission dispatch,” Eng. Optim., vol. 52, no. 11, pp. 1992–2010, Nov. 2020. DOI: 10.1080/0305215X.2019.1690650.
  • S. D. Beigvand, H. Abdi, and M. La Scala, “Combined heat and power economic dispatch problem using gravitational search algorithm,” Electr. Power Syst. Res., vol. 133, pp. 160–172, Apr. 2016. DOI: 10.1016/j.epsr.2015.10.007.
  • M. Basu, “Electric power and heat generation expansion planning,” Electr. Power Compon. Syst., vol. 48, no. 45, pp. 501–511, Mar. 2020. DOI: 10.1080/15325008.2020.1793840.
  • M. Basu, “Heat and power generation augmentation planning of isolated microgrid,” Energy, vol. 223, pp. 120062, May 2021. DOI: 10.1016/j.energy.2021.120062.
  • B. Zeng, D. Zhao, C. Singh, J. Wang, and C. Chen, “Holistic modeling framework of demand response considering multi-timescale uncertainties for capacity value estimation,” Appl. Energy, vol. 247, pp. 692–702, Aug. 2019. DOI: 10.1016/j.apenergy.2019.03.121.
  • J. Ahmad et al., “Techno economic analysis of a wind-photovoltaic-biomass hybrid renewable energy system for rural electrification: A case study of Kallar Kahar,” Energy, vol. 148, pp. 208–234, Apr. 2018. DOI: 10.1016/j.energy.2018.01.133.
  • M. T. Devine and V. Bertsch, “Examining the benefits of load shedding strategies using a rolling-horizon stochastic mixed complementarity equilibrium model,” Eur. J. Oper. Res., vol. 267, no. 2, pp. 643–658, Jun. 2018. DOI: 10.1016/j.ejor.2017.11.041.
  • P. Pourghasem, F. Sohrabi, M. Abapour, and B. Mohammadi-Ivatloo, “Stochastic multi-objective dynamic dispatch of renewable and CHP-based islanded microgrids,” Electr. Power Syst. Res., vol. 173, pp. 193–201, Aug. 2019. DOI: 10.1016/j.epsr.2019.04.021.
  • M. Nazari-Heris, S. Abapour, and B. Mohammadi-Ivatloo, “Optimal economic dispatch of FC-CHP based heat and power micro-grids,” Appl. Therm. Eng., vol. 114, pp. 756–769, Mar. 2017. DOI: 10.1016/j.applthermaleng.2016.12.016.
  • M. Kuchárik and Z. Balogh, “Modeling of uncertainty with petri nets,” in Intelligent Information and Database Systems, vol. 11431. Yogyakarta, Indonesia: Springer International Publishing, 2019, pp. 499–509. DOI: 10.1007/978-3-030-14799-0_43.
  • T. Murata, “Petri nets: Properties, analysis and applications,” Proc. IEEE, vol. 77, no. 4, pp. 541–580, 1989. DOI: 10.1109/5.24143.
  • J. Wang, Timed Petri Nets, vol. 9. Boston, MA: Springer US, 1998. DOI: 10.1007/978-1-4615-5537-7.
  • D. Jana and N. Chakraborty, “Unscented transform-based efficient energy management system of a microgrid for optimal heat power dispatch,” in Control Applications in Modern Power Systems, vol. 870. Jamshedpur, India: Springer Nature Singapore, 2022, pp. 197–207. DOI: 10.1007/978-981-19-0193-5_17.
  • D. Ebeigbe et al., “A generalized unscented transformation for probability distributions,” arXiv:2104.01958 [cs, eess, stat], Apr. 2021. [Online]. Available: http://arxiv.org/abs/2104.01958. Accessed: Aug. 11, 2021.
  • A. A. Moghaddam, A. Seifi, T. Niknam, and M. R. Alizadeh Pahlavani, “Multi-objective operation management of a renewable MG (micro-grid) with back-up micro-turbine/fuel cell/battery hybrid power source,” Energy, vol. 36, no. 11, pp. 6490–6507, Nov. 2011. DOI: 10.1016/j.energy.2011.09.017.
  • D. Jana and N. Chakraborty, “Generalized stochastic Petri nets for uncertain renewable‐based hybrid generation and load in a microgrid system,” Int. Trans. Electr. Energ. Syst., vol. 30, no. 4, pp. 1–20, Apr. 2020. DOI: 10.1002/2050-7038.12195.
  • J. Arnastauskaitė, T. Ruzgas, and M. Bražėnas, “An exhaustive power comparison of normality tests,” Mathematics, vol. 9, no. 7, pp. 788, Apr. 2021. DOI: 10.3390/math9070788.
  • “SPSS Statistics Tutorials and Statistical Guides | Laerd Statistics.” [Online]. Available: https://statistics.laerd.com/. Accessed: Jan. 29, 2023.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.