1,584
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

A High-Voltage Gain Non-Isolated DC–DC Converter Designed for Bipolar DC Microgrids

, , &
Pages 1171-1181 | Received 24 Dec 2022, Accepted 01 Mar 2023, Published online: 06 Apr 2023

References

  • F. S. Al-Ismail, “DC microgrid planning, operation, and control: A comprehensive review,” IEEE Access, vol. 9, pp. 36154–36172, Mar. 2021.
  • J. J. Martínez-Nolasco et al., “Design and implementation of an embedded control system for the interconnection of a DC microgrid to the AC main network,” Electr. Power Compon. Syst., vol. 48, no. 67, pp. 527–542, Aug. 2020. DOI: 10.1080/15325008.2020.1797932.
  • Z. Ali et al., “Fault management in DC microgrids: A review of challenges, countermeasures, and future research trends,” IEEE Access, vol. 9, pp. 128032–128054, Sept. 2021. DOI: 10.1109/ACCESS.2021.3112383.
  • S. Sagiroglu, Y. Canbay, and I. Colak, “Solutions and suggestions for smart grid threats and vulnerabilities,” Int. J. Renew. Energy Res., vol. 9, no. 4, pp. 2053–2063, Dec. 2019.
  • A. Shahid, “Smart grid integration of renewable energy systems,” presented at the 7th Int. Conf. Renew. Energy Res. Appl., Paris, France, Oct. 2018, pp. 944–948.
  • K. Bharath, M. Krishnan, and P. Kanakasabapathy, “A review on DC microgrid control techniques, applications and trends,” Int. J. Renew. Energy Res., vol. 9, no. 3, pp. 1328–1338, Sept. 2019.
  • F. Zhang et al., “Advantages and challenges of DC microgrid for commercial building a case study from Xiamen university DC microgrid,” presented at the IEEE First Int. Conf. DC Microgrids, Jun. 2015, pp. 355–358.
  • M. Y. Nguyen and Y. T. Yoon, “A comparison of microgrid topologies considering both market operations and reliability,” Electr. Power Compon. Syst., vol. 42, no. 6, pp. 585–594, Mar. 2014. DOI: 10.1080/15325008.2014.880963.
  • E. Irmak, N. Güler, E. Kabalcı, and A. Calpbinici, “A modified droop control method for PV systems in island mode DC microgrid,” presented at the 8th Int. Conf. Renew. Energy Res. Appl., Brasov, Romania, Nov. 2019, pp. 1008–1013.
  • H. Kakigano, Y. Miura, and T. Ise, “Low-voltage bipolar-type DC microgrid for super high quality distribution,” IEEE Trans. Power Electron., vol. 25, no. 12, pp. 3066–3075, Dec. 2010. DOI: 10.1109/TPEL.2010.2077682.
  • T. Dragičević, X. Lu, J. C. Vasquez, and J. M. Guerrero, “DC microgrids—Part II: A review of power architectures, applications, and standardization issues,” IEEE Trans. Power Electron., vol. 31, no. 5, pp. 3528–3549, May 2016. DOI: 10.1109/TPEL.2015.2464277.
  • L. Mackay, N. H. van der Blij, L. Ramirez-Elizondo, and P. Bauer, “Toward the universal DC distribution system,” Electr. Power Compon. Syst., vol. 45, no. 10, pp. 1032–1042, Jul. 2017. DOI: 10.1080/15325008.2017.1318977.
  • S. Rivera, R. Lizana F, S. Kouro, T. Dragičević, and B. Wu, “Bipolar DC power conversion: State-of-the-art and emerging technologies,” IEEE J. Emerg. Sel. Top. Power Electron., vol. 9, no. 2, pp. 1192–1204, Apr. 2021. DOI: 10.1109/JESTPE.2020.2980994.
  • G. Gwon et al., “Mitigation of voltage unbalance by using static load transfer switch in bipolar low voltage DC distribution system,” Int. J. Electr. Power Energy Syst., vol. 90, pp. 158–167, Sept. 2017. DOI: 10.1016/j.ijepes.2017.02.009.
  • R. Babazadeh-Dizaji, M. Hamzeh, and N. M. Dehkordi, “A resilient bi-level control strategy for power sharing and voltage balancing in bipolar DC microgrids,” IET Gener. Transm. Distrib., vol. 16, no. 17, pp. 3402–3415, Sept. 2022. DOI: 10.1049/gtd2.12530.
  • V. Fernão Pires, A. Cordeiro, C. Roncero-Clemente, S. Rivera, and T. Dragičević, “DC-DC converters for bipolar microgrid voltage balancing: A comprehensive review of architectures and topologies,” IEEE J. Emerg. Select. Top. Power Electron., 2022. DOI: 10.1109/JESTPE.2022.3208689.
  • Q. Xu et al., “Review on advanced control technologies for bidirectional DC/DC converters in DC microgrids,” IEEE J. Emerg. Sel. Top. Power Electron., vol. 9, no. 2, pp. 1205–1221, Apr. 2021. DOI: 10.1109/JESTPE.2020.2978064.
  • J.-O. Lee, Y.-S. Kim, and S.-I. Moon, “Current injection power flow analysis and optimal generation dispatch for bipolar dc microgrids,” IEEE Trans. Smart Grid, vol. 12, no. 3, pp. 1918–1928, May 2021. DOI: 10.1109/TSG.2020.3046733.
  • S. Rezayi, H. Iman-Eini, M. Hamzeh, S. Bacha, and S. Farzamkia, “Dual-output DC/DC boost converter for bipolar DC microgrids,” IET Renew. Power Gener., vol. 13, no. 8, pp. 1402–1410, Jun. 2019. DOI: 10.1049/iet-rpg.2018.6167.
  • M. B. Ferrera, S. P. Litrán, E. Durán Aranda, and J. M. Andújar Márquez, “A converter for bipolar DC link based on SEPIC-Cuk combination,” IEEE Trans. Power Electron., vol. 30, no. 12, pp. 6483–6487, Dec. 2015. DOI: 10.1109/TPEL.2015.2429745.
  • V. F. Pires, D. Foito, and J. F. Silva, “A single switch hybrid DC/DC converter with extended static gain for photovoltaic applications,” Electr. Power Syst. Res., vol. 146, pp. 228–235, May 2017. DOI: 10.1016/j.epsr.2017.02.001.
  • S. Markkassery, A. Saradagi, A. D. Mahindrakar, N. Lakshminarasamma, and R. Pasumarthy, “Modeling, design and control of non-isolated single-input multi-output zeta-buck-boost converter,” IEEE Trans. Ind. Appl., vol. 56, no. 4, pp. 3904–3918, Aug. 2020.
  • E. D. Aranda, S. P. Litrán, and M. B. F. Prieto, “Combination of interleaved single-input multiple-output DC-DC converters,” CSEE J. Power Energy Syst., vol. 8, no. 1, pp. 132–142, Jan. 2022.
  • V. F. Pires et al., “Interlink converter for hybrid AC to bipolar DC microgrid or to two DC microgrids,” presented at the 48th Annu. Conf. Ind. Electron. Soc., Brussels, Belgium, Oct. 17–20, 2022, pp. 1–6.
  • J. Rajesh, K. S. Nisha, A. K. Bonala, and S. R. Sandepudi, “Predictive control of three level boost converter interfaced SPV system for bi-polar DC micro grid,” presented at the IEEE Int. Conf. Electr. Comput. Commun. Technol., Coimbatore, India, Feb. 2019, pp. 1–6.
  • C. Lupangu, A. K. Saha, R. C. Bansal, and J. J. Justo, “Critical performance comparison between single-stage and two-stage incremental conductance MPPT algorithms for DC/DC boost-converter applied in PV systems,” Electr. Power Compon. Syst., vol. 50, no. 45, pp. 207–222, 2022. DOI: 10.1080/15325008.2022.2136286.
  • E. Ribeiro, A. J. M. Cardoso, and C. Boccaletti, “Fault-tolerant strategy for a photovoltaic DC–DC converter,” IEEE Trans. Power Electron., vol. 28, no. 6, pp. 3008–3018, Jun. 2013. DOI: 10.1109/TPEL.2012.2226059.
  • S. Mane, P. Kadam, G. Lahoti, F. Kazi, and N. M. Singh, “Optimal load balancing strategy for hybrid energy management system in DC microgrid with PV, fuel cell and battery storage,” presented at the IEEE Int. Conf. Renew. Energy Res. Appl., Birmingham, UK, Nov. 2016, pp. 851–856.
  • M. Zdiri, M. Ammar, B. Bouzidi, R. Abdelhamid, and H. Abdallah, “An advanced switch failure diagnosis method and fault tolerant strategy in photovoltaic boost converter,” Electr. Power Compon. Syst., vol. 48, no. 18, pp. 1932–1944, 2020. DOI: 10.1080/15325008.2021.1909182.
  • A. Abusorrah et al., “Stability of a boost converter fed from photovoltaic source,” Sol. Energy, vol. 98, Part C, pp. 458–471, Dec. 2013.
  • N. D. Dao, D. Lee, and Q. D. Phan, “High-efficiency SiC-based isolated three-port DC/DC converters for hybrid charging stations,” IEEE Trans. Power Electron., vol. 35, no. 10, pp. 10455–10465, Oct. 2020. DOI: 10.1109/TPEL.2020.2975124.
  • H.-J. Byun, S.-H. Kim, S.-H. Kim, J. Yi, and C.-Y. Won, “Input-series-output-parallel DAB converter on energy storage system for voltage balancing strategy in bipolar DC microgrid,” presented at the 24th Int. Conf. Electr. Mach. Syst., Gyeongju, Korea, Republic of, Nov. 2021, pp. 818–823.
  • H. Jou, J. Huang, J. Wu, and K. Wu, “Novel isolated multilevel DC-DC power converter,” IEEE Trans. Power Electron., vol. 31, no. 4, pp. 2690–2694, Apr. 2016. DOI: 10.1109/TPEL.2015.2487558.
  • Y. Zhang, L. Zhou, M. Sumner, and P. Wang, “Single-switch, wide voltage gain range, boost DC-DC converter for fuel cell vehicles,” IEEE Trans. Veh. Technol., vol. 67, no. 1, pp. 134–145, Jan. 2018. DOI: 10.1109/TVT.2017.2772087.
  • J. L. Durán-Gómez, E. García-Cervantes, D. R. López-Flores, P. N. Enjeti, and L. Palma, “Analysis and evaluation of a series-combined connected boost and buck-boost dc-dc converter for photovoltaic application”, presented at the IEEE Appl. Power Electron. Conf. Exp., Dallas, TX, USA, Mar. 2006, pp. 19–23.
  • K. Haddad, “Three level DC–DC converters as efficient interface in two stage PV power systems,” presented at the IEEE Energytech, Cleveland, OH, USA, May 2012, pp. 1–6.
  • X. Ruan, B. Li, Q. Chen, S. Tan, and C. K. Tse, “Fundamental considerations of three-level DC-DC converters: Topologies, analyses, and control,” IEEE Trans. Circuits Syst. I, vol. 55, no. 11, pp. 3733–3743, Dec. 2008. DOI: 10.1109/TCSI.2008.927218.
  • V. F. Pires, A. Cordeiro, D. Foito, and J. F. Silva, “A DC-DC converter with capability to support the voltage balance of DC bipolar microgrids,” presented at the 11th Int. Conf. Renew. Energy Res. Appl. (ICRERA), Istanbul, Turkey, Sept. 2022, pp. 50–55.
  • S. Padmanaban, F. Blaabjerg, P. Wheeler, J. O. Ojo, and A. H. Ertas, “High-voltage DC-DC converter topology for PV energy utilization—investigation and implementation,” Electr. Power Compon. Syst., vol. 45, no. 3, pp. 221–232, 2017. DOI: 10.1080/15325008.2016.1248251.
  • M. Yasir, A. Khan, H. Liu, S. M. Hashemzadeh, and X. Yuan, “A novel high step-up DC–DC converter with improved P&O MPPT for photovoltaic applications,” Electr. Power Compon. Syst., vol. 49, no. 9–10, pp. 884–900, Apr. 2022.
  • Z. Saadatizadeh, P. C. Heris, M. Sabahi, and E. Babaei, “A DC–DC transformerless high voltage gain converter with low voltage stresses on switches and diodes,” IEEE Trans. Power Electron., vol. 34, no. 11, pp. 10600–10609, Nov. 2019. DOI: 10.1109/TPEL.2019.2900212.
  • Y. T. R. Palleswari and V. Rajendran, “A novel hybrid high gain DC-DC converter for renewable energy applications,” Int. J. Renew. Energy Res., vol. 12, no. 1, pp. 88–96, Mar. 2022.
  • W. Hassan, D. D.-C. Lu, and W. Xiao, “Single-switch high step-up DC–DC converter with low and steady switch voltage stress,” IEEE Trans. Ind. Electron., vol. 66, no. 12, pp. 9326–9338, Dec. 2019. DOI: 10.1109/TIE.2019.2893833.
  • A. Alzahrani, P. Shamsi, and M. Ferdowsi, “A novel interleaved non-isolated high-gain DC-DC boost converter with Greinacher voltage multiplier cells,” presented at the IEEE 6th Int. Conf. Renew. Energy Res. Appl., San Diego, CA, USA, November 2017, pp. 222–227.
  • H. Kang and H. Cha, “A new nonisolated high-voltage-gain boost converter with inherent output voltage balancing,” IEEE Trans. Ind. Electron., vol. 65, no. 3, pp. 2189–2198, Mar. 2018. DOI: 10.1109/TIE.2017.2736508.
  • A. Alzahrani, P. Shamsi, and M. Ferdowsi, “Boost converter with bipolar Dickson voltage multiplier cells,” presented at the 6th Int. Conf. Renew. Energy Res. Appl., San Diego, CA, USA, November 2017, pp. 228–233.
  • I. Ninma Jiya, H. Van Khang, N. Kishor, and R. M. Ciric, “Novel family of high-gain nonisolated multiport converters with bipolar symmetric outputs for DC microgrids,” IEEE Trans. Power Electron., vol. 37, no. 10, pp. 12151–12166, Oct. 2022. DOI: 10.1109/TPEL.2022.3176688.
  • V. F. Pires, A. Cordeiro, D. Foito, and J. F. A. Silva, “Dual output and high voltage gain DC-DC converter for PV and fuel cell generators connected to DC bipolar microgrids,” IEEE Access, vol. 9, pp. 157124–157133, Oct. 2021. DOI: 10.1109/ACCESS.2021.3122877.