100
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Optimized Convolutional Neural Network-Based Adaptive Controller for 6-Phase DFIG-Based Wind Energy Systems

ORCID Icon, ORCID Icon & ORCID Icon
Pages 2262-2283 | Received 22 Dec 2022, Accepted 24 Apr 2023, Published online: 30 May 2023

References

  • I. Gonzalez et al., “Fault-tolerant operation of six-phase energy conversion systems with parallel machine-side converters,” IEEE Trans. Power Electron., vol. 31, no. 4, pp. 3068–3079, 2016. DOI: 10.1109/TPEL.2015.2455595.
  • H. S. Che et al., “Operation of a six-phase induction machine using series-connected machine-side converters,” IEEE Trans. Ind. Electron., vol. 61, no. 1, pp. 164–176, 2014. DOI: 10.1109/TIE.2013.2248338.
  • M. Atallah et al., “Grid synchronization of equivalent wind farm equipped with DFIG model for transient stability by using nonlinear integral backstepping control,” Arab. J. Sci. Eng., vol. 48, no. 5, pp. 5771–5783, 2023. DOI: 10.1007/s13369-022-07021-y.
  • L. A. G. Gomez et al., “Wind-DFIG wireless controlled using EGPRS standard applied to the ancillary services in a smart grid environment,” Electr. Power Syst. Res., vol. 189, pp. 106807, 2020. DOI: 10.1016/j.epsr.2020.106807.
  • M. Abdelrahem and R. Kennel, “Efficient direct model predictive control for doubly-fed induction generators,” Electr. Power Compon. Syst., vol. 45, no. 5, pp. 574–587, 2017. DOI: 10.1080/15325008.2017.1289572.
  • Y. Sahri et al., “New intelligent direct power control of DFIG-based wind conversion system by using machine learning under variations of all operating and compensation modes,” Energy Rep., vol. 7, pp. 6394–6412, 2021. DOI: 10.1016/j.egyr.2021.09.075.
  • W. Dominik, W. Alexander, and L. Philipp, “Impact of wind turbine generator technologies and frequency controls on the stable operation of medium voltage islanded microgrids,” Electr. Power Syst. Res., vol. 189, pp. 10676, 2020. DOI: 10.1016/j.epsr.2020.106760.
  • H. Reza, A. Neda, S. Miadreza, and P. S. CatalãoJoão, “Decentralized frequency-voltage control and stability enhancement of standalone wind turbine-load-battery,” Int. J. Electr. Power Energy Syst., vol. 102, pp. 1–10, 2018. DOI: 10.1016/j.ijepes.2018.04.021.
  • K. V. Shihabudheen, G. N. Pillai, and S. Krishnama Raju, “Neuro-fuzzy control of DFIG wind energy system with distribution network,” Electr. Power Compon. Syst., vol. 46, no. 13, pp. 1416–1431, 2018. DOI: 10.1080/15325008.2018.1499154.
  • P. E. Jonathan et al., “Reinforcement learning with algorithms from probabilistic structure estimation,” Automatica, vol. 144, pp. 110483, 2022. DOI: 10.1016/j.automatica.2022.110483.
  • K. Sung Wook, O. Ki-Yong, and L. Seungchul, “Novel informed deep learning-based prognostics framework for on-board health monitoring of lithium-ion batteries,” Appl. Energy, vol. 15, pp. 119011, 2022. DOI: 10.1016/j.apenergy.2022.119011.
  • O. Fink et al., “Potential, challenges and future directions for deep learning in prognostics and health management applications,” Eng. Appl. Artif. Intell., vol. 92, pp. 103678, 2020. DOI: 10.1016/j.engappai.2020.103678.
  • L. Yin, T. Yu, and L. Zhou, “Design of an ovel smart generation controller based on deep qlearning for large-scale interconnected power system,” J. Energy Eng., vol. 144, no. 3, pp. 04018033, 2018. DOI: 10.1061/(ASCE)EY.1943-7897.0000519.
  • T. Wang et al., “Automatic adjustment method of power flow calculation convergence for large-scale power grid based on knowledge experience and deep reinforcement learning,” presented at the IEEE 4th Conf. on Energy Internet and Energy Syst. Integration (EI2), Wuhan, China, 2020, pp. 694–699. DOI: 10.1109/EI250167.2020.9346831.
  • X. S. Yang, “Flower pollination algorithm for global optimization,” Unconven. Comput. Nat. Comput., vol. 7445, pp. 240–249, 2012.
  • X. S. Yang, M. Karamanoglu, and X. He, “Flower pollination algorithm: A novel approach for multiobjective optimization,” Eng. Optim., vol. 46, no. 9, pp. 1222–1237, 2014. DOI: 10.1080/0305215X.2013.832237.
  • R. Jia, H. Xia, S. Zhang, W. Su, and S. Xu, “Optimal design of Savonius wind turbine blade based on support vector regression surrogate model and modified flower pollination algorithm,” Energy Convers. Manage., vol. 270, pp. 116247, 2022. DOI: 10.1016/j.enconman.2022.116247.
  • P. L. Mareddy, S. R. Narapureddy, V. R. Dwivedula, and P. R. Karanam, “Development of scheduling methodology in a multi-machine flexible manufacturing system without tool delay employing flower pollination algorithm,” Eng. Appl. Artif. Intell., vol. 115, pp. 105275, 2022. DOI: 10.1016/j.engappai.2022.105275.
  • Y. Shen et al., “Prediction model for methanation reaction conditions based on a state transition simulated annealing algorithm optimized extreme learning machine,” Int. J. Hydrogen Energy, 2022. DOI: 10.1016/j.ijhydene.2022.10.031.
  • H. Duan et al., “Insight into torrefaction of woody biomass: Kinetic modeling using pattern search method,” Energy, vol. 201, pp. 117648, 2020. DOI: 10.1016/j.energy.2020.117648.
  • P. Nimmanterdwong, B. Chalermsinsuwan, and P. Piumsomboon, “Optimizing utilization pathways for biomass to chemicals and energy by integrating emergy analysis and particle swarm optimization (PSO),” Renew. Energy, vol. 202, pp. 1448–1459, 2023. DOI: 10.1016/j.renene.2022.12.036.
  • N. K. Mishra, Z. Husain, and A. Iqwal, “Modeling and analysis of novel six-phase DFIG through asymmetrical winding structure for disperse generation,” Int. Trans. Electr. Energ. Syst., vol. 30, no. 12, pp. 1–26, 2020. DOI: 10.1002/2050-7038.12649.
  • H. Gasmi et al., “Fractional-order proportional-integral super twisting sliding mode controller for wind energy conversion system equipped with doubly fed induction generator,” J. Power Electron., vol. 22, no. 8, pp. 1357–1373, 2022. DOI: 10.1007/s43236-022-00430-0.
  • K. A. Chinmaya and G. K. Sing, “Experimental analysis of various space vector pulse width modulation (SVPWM) techniques for dual three phase induction motor drive,” Int. Trans. Electr. Energ. Syst., vol. 29, no. 1, pp. e2678, 2019. DOI: 10.1002/etep.2678.
  • A. G. Yepes, J. Doval-Gandoy, and H. Toliyat, “Strategy with smooth transitions and improved torque-speed region and stator copper loss for two-level asymmetrical six-phase induction motor drives under switch faults,” IEEE Trans. Power Electron., vol. 36, no. 2, pp. 1954–1969, 2021. DOI: 10.1109/TPEL.2020.3011852.
  • A. S. Abdel-Khalik, R. A. Hamdy, A. M. Massoud, and S. Ahmed, “Low-order space harmonic modeling of asymmetrical six-phase induction machines,” IEEE Access., vol. 7, pp. 6866–6876, 2019. DOI: 10.1109/ACCESS.2018.2889044.
  • M. Sacie, M. Santos, R. López, and R. Pandit, “Use of state-of-art machine learning technologies for forecasting offshore wind speed, wave and misalignment to improve wind turbine performance,” JMSE., vol. 10, no. 7, pp. 938, 2022. DOI: 10.3390/jmse10070938.
  • G. W. Chang, H. J. Lu, Y. R. Chang, and Y. D. Lee, “An improved neural network-based approach for short-term wind speed and power forecast,” Renew. Energy, vol. 105, pp. 301–311, 2017. DOI: 10.1016/j.renene.2016.12.071.
  • R. Sitharthan, K. R. Devabalaji, and A. Jees, “Arun Jees A “Levenberg–Marquardt trained feed-forward backpropagation based intelligent pitch angle controller for wind generation system,” Renew. Energy Focus, vol. 2223, pp. 24–32, 2017. DOI: 10.1016/j.ref.2017.10.003.
  • A. Arcos Jiménez, C. Quiterio Gómez Muñoz, and F. Pedro García Márquez, “Machine learning for wind turbine blades maintenance management,” Energies, vol. 11, no. 1, pp. 13, 2017. DOI: 10.3390/en11010013.
  • L. Yin and Y. Lu, “Expandable deep width learning for voltage control of three-state energy model based smart grids containing flexible energy sources,” Energy, vol. 226, pp. 120437, 2021. DOI: 10.1016/j.energy.2021.120437.
  • Z. Song, Z. Cao, C. Wan, and S. Xu, “An ensemble wavelet deep learning approach for short-term load forecasting,” presented at the 2019 IEEE Innovative Smart Grid Technologies - Asia (ISGT Asia), Chengdu, China, 2019, pp. 1205–1210. DOI: 10.1109/ISGT-Asia.2019.8881490.
  • H. Sun et al., “Learning to optimize: Training deep neural networks for interference management,” IEEE Trans. Signal Process., vol. 66, no. 20, pp. 5438–5453, 2018. DOI: 10.1109/TSP.2018.2866382.
  • C. Chen, “Self-tuning PID control of induction motor speed control system based on diagonal recurrent neural network,” IJCA., vol. 8, no. 10, pp. 321–334, 2015. DOI: 10.14257/ijca.2015.8.10.30.
  • R. Kumar, S. Srivastava, J. R. P. Gupta, and A. Mohindru, “Diagonal recurrent neural network based identification of nonlinear dynamical systems with Lyapunov stability based adaptive learning rates,” Neurocomputing, vol. 287, pp. 102–117, 2018. DOI: 10.1016/j.neucom.2018.01.073.
  • J. Duan et al., “A combined short-term wind speed forecasting model based on CNN–RNN and linear regression optimization considering error,” Renew. Energy, vol. 200, pp. 788–808, 2022. DOI: 10.1016/j.renene.2022.09.114.
  • Z. Shen, X. Fan, L. Zhang, and H. Yu, “Wind speed prediction of unmanned sailboat based on CNN and LSTM hybrid neural network,” Ocean Eng., vol. 254, pp. 111352, 2022. DOI: 10.1016/j.oceaneng.2022.111352.
  • C. Emeksiz and M. Tan, “Wind speed estimation using novelty hybrid adaptive estimation model based on decomposition and deep learning methods (ICEEMDAN-CNN),” Energy, vol. 249, pp. 123785, 2022. DOI: 10.1016/j.energy.2022.123785.
  • M. Zou et al., “Bayesian CNN-BiLSTM and vine-GMCM based probabilistic forecasting of hour-ahead wind farm power outputs,” IEEE Trans. Sustain. Energy, vol. 13, no. 2, pp. 1169–1187, Apr. 2022. DOI: 10.1109/TSTE.2022.3148718.
  • F. Song, H. Zhang, L. Ma, and X. Liu, “An improved convolutional neural network-based approach for short-term wind speed forecast,” presented at the 2020 39th Chinese Control Conference (CCC), Shenyang, China, 2020, pp. 7599–7604. DOI: 10.23919/CCC50068.2020.9189329.
  • D. Cheng, L. Liu, and Z. Yu, “CNN-based intelligent fault-tolerant control design for turbofan engines with actuator faults,” IEEE Access, vol. 9, pp. 28122–28139, 2021. DOI: 10.1109/ACCESS.2021.3058387.
  • H. Chojaa et al., “Integral sliding mode control for DFIG based WECS with MPPT based on artificial neural network under a real wind profile,” Energy Rep., vol. 7, pp. 4809–4824, 2021. DOI: 10.1016/j.egyr.2021.07.066.
  • S. Mahfoud, A. Derouich, N. E. L. Ouanjli, and M. EL Mahfoud, “Enhancement of the direct torque control by using artificial neuron network for a doubly fed induction motor,” Intell. Syst. Appl., vol. 13, pp. 200060, 2022. January. DOI: 10.1016/j.iswa.2022.200060.
  • S. Labdai, N. Bounar, A. Boulkroune, B. Hemici, and L. Nezli, “Artificial neural network-based adaptive control for a DFIG-based WECS,” ISA Trans., vol. 128, pp. 171–180, 2022. DOI: 10.1016/j.isatra.2021.11.045.
  • C. Chellaswamy, T. S. Geetha, P. Thiruvalar Selvan, and A. Arunkumar, “6-phase DFIG for wind energy conversion system: A hybrid approach,” Sustain. Energy Technol. Assess., vol. 53, pp. 102497, 2022. DOI: 10.1016/j.seta.2022.102497.
  • J. B. Odili, A. Noraziah, and A. E. Babalola, “Flower pollination algorithm for data generation and analytics - A diagnostic analysis,” Sci. African, vol. 8, pp. e00440, 2020. DOI: 10.1016/j.sciaf.2020.e00440.
  • M. J. Morshed and A. Fekih, “A nonlinear control design to improve the dynamic stability of a multi-machine power system with DFIG-based wind turbines,” presented at the 2018 Annu. Amer. Control Conf. (ACC), Milwaukee, WI, 2018, pp. 6731–6736. DOI: 10.23919/ACC.2018.8430821.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.