131
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Development of an Advanced AC Drive for the Heating Circulation Pumps with Dry-Rotor Using a Synchronous Reluctance Motor

ORCID Icon & ORCID Icon
Pages 1815-1828 | Received 20 Dec 2022, Accepted 01 May 2023, Published online: 30 May 2023

References

  • S. Urschel and J. Dolgirev, “Energy-and resource saving synchronous reluctance machine for the use in circulation pumps,” presented at the 2017 IEEE 3rd Int. Future Energy Electron. Conf. and ECCE Asia (IFEEC 2017-ECCE Asia), Kaohsiung, Taiwan, IEEE, Jun. 2017, pp. 2139–2144.
  • A. Koziorowska and J. Bartman, “A‐model as a way of squirrel cage induction motor modelling used in pumps drive systems,” Int. J. Numer. Model., vol. 25, no. 2, pp. 103–114, 2012. DOI: 10.1002/jnm.814.
  • F. Rezaee‐Alam, A. Nazari Marashi, A. Dehafarin, K. Kanzi, and S. Roozbehani, “Analytical modelling of one cage rotor induction motor for electric submersible pumps,” IET Electr. Power Appl., vol. 16, no. 11, pp. 1273–1285, 2022. DOI: 10.1049/elp2.12223.
  • A. K. Daud and M. M. Mahmoud, “Solar powered induction motor-driven water pump operating on a desert well, simulation and field tests,” Renew. Energy, vol. 30, no. 5, pp. 701–714, 2005. DOI: 10.1016/j.renene.2004.02.016.
  • P. Choudhary, R. K. Srivatava, and S. De, “Solar powered induction motor based water pumping system: A review of components, parameters and control methodologies,” presented at the 2017 4th IEEE Uttar Pradesh Section Int. Conf. on Electr., Comput. and Electron. (UPCON), Mathura, India, IEEE, Oct. 2017, pp. 666–678. DOI: 10.1109/UPCON.2017.8251129.
  • M. J. Karimi, A. Sadighi, and M. R. H. Yazdi, “Online sensorless efficiency estimation of induction-motor-driven pumps,” presented at the 2021 9th RSI Int. Conf. on Robotics and Mechatronics (ICRoM), Tehran, Iran, IEEE, Nov. 2021, pp. 358–364. DOI: 10.1109/ICRoM54204.2021.9663513.
  • A. Shankar, V. K. Umashankar, S. Paramasivam, S. Sanjeevikumar, and Y. Venkatesh, “Modeling and simulation of synchronous reluctance motor for pumping application using field-oriented control,” in Advances in Systems, Control and Automation. Singapore: Springer, 2018, pp. 329–336.
  • M. C. Ancuti et al., “Practical wide-speed-range sensorless control system for permanent magnet reluctance synchronous motor drives via active flux model,” Electr. Power Compon. Syst., vol. 42, no. 1, pp. 91–102, 2014. DOI: 10.1080/15325008.2013.842617.
  • B. Singh and S. Murshid, “A grid-interactive permanent-magnet synchronous motor-driven solar water-pumping system,” IEEE Trans. Ind. Appl., vol. 54, no. 5, pp. 5549–5561, 2018. DOI: 10.1109/TIA.2018.2860564.
  • R. Chenni, L. Zarour, A. Bouzid, and T. Kerbache, “Comparative study of photovoltaic pumping systems using a permanent magnet synchronous motor (PMSM) and an asynchronous motor (ASM),” Rev. Energ. Ren., vol. 9, pp. 17–28, 2006.
  • M. N. Ibrahim, P. Sergeant, and E. M. Rashad, “Synchronous reluctance motor performance based on different electrical steel grades,” IEEE Trans. Magn., vol. 51, no. 11, pp. 1–4, 2015. DOI: 10.1109/TMAG.2015.2441772.
  • M. Ersöz, Y. Öner, and O. Bingöl, “Akı bariyerli TLA tipi senkron relüktans motor tasarımı ve optimizasyonu,” J. Faculty Eng. Archit. Gazi Univ., vol. 31, no. 4, 2016. DOI: 10.17341/gazimmfd.278449.
  • Y. Öner, and M. Öztürk, “The magnetic analysis and design of new type axial flux switched reluctance motor,” J Faculty Eng. Archit. Gazi Univ., vol. 30, no. 3, pp. 461–474, 2015. DOI: 10.17341/gummfd.55972.
  • T. Mohanarajah et al., “A novel method to optimize permanent magnet assisted synchronous reluctance machines,” Electr. Power Compon. Syst., vol. 48, no. 910, pp. 933–943, 2020. DOI: 10.1080/15325008.2020.1821837.
  • K. PFCNaraharisetti, J. Channegowda, and P. B. Green, “Design and modeling of CCM average current control PFC AC-DC Boost converter,” In 2021 IEEE Green Technologies Conference (GreenTech), Denver, CO, IEEE, Apr. 2021, pp. 403–408. DOI: 10.1109/GreenTech48523.2021.00069.
  • H. Luo, J. Xu, D. He, and J. Sha, “Pulse train control strategy for CCM boost PFC converter with improved dynamic response and unity power factor,” IEEE Trans. Ind. Electron., vol. 67, no. 12, pp. 10377–10387, 2020. DOI: 10.1109/TIE.2019.2962467.
  • H. S. Nair and N. Lakshminarasamma, “A computationally simple predictive CCM average current controller with nearly zero tracking error for boost PFC converter,” IEEE Trans. Ind. Appl., vol. 56, no. 5, pp. 5083–5094, 2020. DOI: 10.1109/TIA.2020.2999268.
  • M. Huba and Z. Gao, “Uncovering disturbance observer and ultra-local plant models in series PI controllers,” Symmetry, vol. 14, no. 4, pp. 640, 2022. DOI: 10.3390/sym14040640.
  • F. J. Lin, M. S. Huang, S. G. Chen, and C. W. Hsu, “Intelligent maximum torque per ampere tracking control of synchronous reluctance motor using recurrent Legendre fuzzy neural network,” IEEE Trans. Power Electron., vol. 34, no. 12, pp. 12080–12094, 2019. DOI: 10.1109/TPEL.2019.2906664.
  • E. Daryabeigi, A. Mirzaei, H. A. Zarchi, and S. Vaez-Zadeh, “Deviation control in comparison with DTC and FOC for SynRM drives,” presented at the 2019 10th Int. Power Electron., Drive Syst. and Technol. Conf. (PEDSTC), Shiraz, Iran, IEEE, Feb. 2019, pp. 713–717. DOI: 10.1109/PEDSTC.2019.8697756.
  • A. Varatharajan, S. Cruz, H. Hadla, and F. Briz, “Predictive torque control of SynRM drives with online MTPA trajectory tracking and inductances estimation,” presented at the 2017 IEEE Int. Electr. Mach. and Drives Conf. (IEMDC), Miami, FL, IEEE, May 2017, pp. 1–7. DOI: 10.1109/IEMDC.2017.8002104.
  • S. Sriprang et al., “Design and control of permanent magnet assisted synchronous reluctance motor with copper loss minimization using MTPA,” J. Electr. Eng., vol. 71, no. 1, pp. 11–19, 2020. DOI: 10.2478/jee-2020-0002.
  • S. G. Chen, F. J. Lin, C. H. Liang, and C. H. Liao, “Intelligent maximum power factor searching control using recurrent Chebyshev fuzzy neural network current angle controller for SynRM drive system,” IEEE Trans. Power Electron., vol. 36, no. 3, pp. 3496–3511, 2021. DOI: 10.1109/TPEL.2020.3016709.
  • H. Hadla and F. Santos, “Performance comparison of field-oriented control, direct torque control, and model-predictive control for SynRMs,” Chin. J. Electr. Eng., vol. 8, no. 1, pp. 24–37, 2022. DOI: 10.23919/CJEE.2022.000003.
  • V. Goman, V. Prakht, V. Kazakbaev, and V. Dmitrievskii, “Comparative study of energy consumption and CO2 emissions of variable-speed electric drives with induction and synchronous reluctance motors in pump units,” Mathematics, vol. 9, no. 21, pp. 2679, 2021. DOI: 10.3390/math9212679.
  • L. Gevorkov, J. L. Domínguez-García, A. Rassõlkin, and T. Vaimann, “Comparative simulation study of pump system efficiency driven by induction and synchronous reluctance motors,” Energies, vol. 15, no. 11, pp. 4068, 2022. DOI: 10.3390/en15114068.
  • W. Lee, J. Kim, P. Jang, and K. Nam, “On-line MTPA control method for synchronous reluctance motor,” IEEE Trans. Ind. Appl., vol. 58, no. 1, pp. 356–364, 2022. DOI: 10.1109/TIA.2021.3128468.
  • G. V. Kumar, C. H. Chuang, M. Z. Lu, and C. M. Liaw, “Development of an electric vehicle synchronous reluctance motor drive,” IEEE Trans. Veh. Technol., vol. 69, no. 5, pp. 5012–5024, 2020. DOI: 10.1109/TVT.2020.2983546.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.