132
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Effects of Permanent Magnets on Different Flux Barriers for the AF-SynRMs

&
Pages 1936-1945 | Received 10 Jun 2023, Accepted 27 Nov 2023, Published online: 15 Dec 2023

References

  • A. Boglietti and M. Pastorelli, “Induction and synchronous reluctance motors comparison,” 2008 34th Annual Conference of IEEE Industrial Electronics, Orlando, FL, USA, 2008, pp. 2041–2044, DOI: 10.1109/IECON.2008.4758270.
  • N. Bianchi et al., “Electric vehicle traction based on synchronous reluctance motors; Electric vehicle traction based on synchronous reluctance motors,” IEEE Trans. Ind. Applicat., vol. 52, no. 6, pp. 4762–4769, 2016. DOI: 10.1109/TIA.2016.2599850.
  • B. M. Murataliyev et al., “Synchronous reluctance machines: A comprehensive review and technology comparison," Proc. IEEE, vol. 110, no. 3, pp. 382–399, 2022. DOI: 10.1109/JPROC.2022.3145662.
  • K.-C. Kim, J. S. Ahn, S. H. Won, J.-P. Hong and J. Lee, “A study on the optimal design of SynRM for the high torque and power factor,” IEEE Trans. Magn., vol. 43, no. 6, pp. 2543–2545, 2007. DOI: 10.1109/TMAG.2007.893302.
  • R.-R. Moghaddam and F. Gyllensten, “Novel high-performance SynRM design method: An easy approach for a complicated rotor topology,” IEEE Trans. Ind. Electron., vol. 61, no. 9, pp. 5058–5065, 2014. DOI: 10.1109/TIE.2013.2271601.
  • C. Babetto, G. Bacco and N. Bianchi, “Synchronous reluctance machine optimization for high-speed applications,” IEEE Trans. Energy Convers., vol. 33, no. 3, pp. 1266–1273, 2018. DOI: 10.1109/TEC.2018.2800536.
  • L. N. Langue, G. Friedrich, S. Vivier, K. El and K. Benkara, “Optimization of synchronous reluctance machines for high power factor; optimization of synchronous reluctance machines for high power factor,” 2016 XXII Int. Conf. Electr. Mach, 2016. DOI: 10.1109/ICELMACH.2016.7732794.
  • J. M. Park, S. Il Kim, J. Pyo Hong and J. Ho Lee, “Rotor design on torque ripple reduction for a synchronous reluctance motor with concentrated winding using response surface methodology,” IEEE Trans. Magn., vol. 42, no. 10, pp. 3479–3481, 2006. DOI: 10.1109/TMAG.2006.879501.
  • R.-R. Moghaddam, F. Magnussen and C. Sadarangani, “Novel rotor design optimization of synchronous reluctance machine for low torque ripple,” 2012 XXth Int. Conf. Electr. Mach, 2012. DOI: 10.1109/ICElMach.2012.6349952.
  • M. Barcaro, T. Pradella and I. Furlan, “Low-torque ripple design of a ferrite-assisted synchronous reluctance motor,” IET Electric Power Applicat., vol. 10, no. 5, pp. 319–329, 2016. DOI: 10.1049/iet-epa.2015.0248.
  • C. M. Spargo, B. C. Mecrow, J. D. Widmer, C. Morton and N. J. Baker, “Design and validation of a synchronous reluctance motor with single tooth windings,” IEEE Trans. Energy Convers., vol. 30, no. 2, pp. 795–805, 2015. DOI: 10.1109/TEC.2014.2384476.
  • C. Oprea, A. Dziechciarz and C. Martis, “Comparative analysis of different synchronous reluctance motor topologies,” 2015 IEEE 15th Int. Conf. Environ. Electr. Eng, 2015. DOI: 10.1109/EEEIC.2015.7165463.
  • Y. Wang, G. Bacco and N. Bianchi, “Geometry analysis and optimization of PM-assisted reluctance motors,” IEEE Trans. Ind. Applicat., vol. 53, no. 5, pp. 4338–4347, 2017. DOI: 10.1109/TIA.2017.2702111.
  • G. Pellegrino, F. Cupertino and C. Gerada, “Automatic design of synchronous reluctance motors focusing on barrier shape optimization,” IEEE Trans. Ind. Applicat., vol. 51, no. 2, pp. 1465–1474, Mar2015. DOI: 10.1109/TIA.2014.2345953.
  • H. M. Cheshmehbeigi and L. Behroozi, “Analytical design, electromagnetic field analysis and parametric sensitivity analysis of an external rotor permanent magnet-assisted synchronous reluctance motor,” Electr. Eng., vol. 102, no. 4, pp. 1947–1957, 2020. · DOI: 10.1007/s00202-020-01006-6.
  • M. Gamba, G. Pellegrino, A. Vagati and F. Villata, “Design of a line-start synchronous reluctance motor,” 2013 Int. Electr. Mach. Drives Conf, 2013. DOI: 10.1109/IEMDC.2013.6556163.
  • H. Kim et al., “A study on the rotor design of line start synchronous reluctance motor for IE4 efficiency and improving power factor,” Energies, vol. 13, no. 21, pp. 5774, 2020. DOI: 10.3390/en13215774.
  • M. Barcaro, N. Bianchi and F. Magnussen, “Permanent-magnet optimization in permanent-magnet-assisted synchronous reluctance motor for a wide constant-power speed range,” IEEE Trans. Ind. Electron, vol. 59, no. 6, pp. 2495–2502, Jun. 2012. DOI: 10.1109/TIE.2011.2167731.
  • A.-C. Pop, F. Pop Piglesan, R. Martis, I. Vintiloiu and C. Martis, “First insights on the electromagnetic design of axial-flux synchronous-reluctance machine,” IECON 2018 - 44th Annu. Conf. IEEE Ind. Electron. Soc., vol. 1, 2018.
  • M. Tawhid, B. Tarek and Y. Sozer, “Design of a novel axial flux permanent magnet assisted synchronous reluctance motor,” 2019 IEEE Energy Conversion Congress and Exposition (ECCE), Baltimore, MD, USA, 2019, pp. 3004–3009.
  • H. S. Gercekcioglu and M. Akar, “Optimal rotor design of novel axial flux synchronous reluctance motor and validation,” Int. Trans. Electr. Energ. Syst., vol. 31, no. 5, pp. e12866, 2021. DOI: 10.1002/2050-7038.12866.
  • F. Şahin, “Design and development of a high-speed axial-flux permanent-magnet machine,” 2001. https://pure.tue.nl/ws/portalfiles/portal/2438215/200111643.pdf. DOI: 10.6100/IR544267.
  • A. Mahmoudi, S. Kahourzade, N. A. Rahim and W. P. Hew, “Design, analysis, and prototyping of an axial-flux permanent magnet motor based on genetic algorithm and finite-element analysis,” IEEE Trans. Magn., vol. 49, no. 4, pp. 1479–1492, 2013. DOI: 10.1109/TMAG.2012.2228213.
  • K. Deb, A. Pratap, S. Agarwal and T. Meyarivan, “A fast and elitist multiobjective genetic algorithm: NSGA-II,” IEEE Trans. Evol. Computat., vol. 6, no. 2, pp. 182–197, 2002. DOI: 10.1109/4235.996017.
  • Y. Hua, H. Zhu, M. Gao and Z. Ji, “Multiobjective optimization design of permanent magnet assisted bearingless synchronous reluctance motor using NSGA,” IEEE Trans. Ind. Electron., vol. 68, no. 11, pp. 10477–10487, 2021. DOI: 10.1109/TIE.2020.3037873.
  • M. Akar et al., “Efficiency analysis of axial flux SynRM in variable speed applications,” Machines, vol. 10, no. 10, pp. 838, 2022. https://www.proquest.com/scholarly-journals/efficiency-analysis-axial-flux-synrm-variable/docview/2728493856/se-2. DOI: 10.3390/machines10100838.
  • N. Jafferi and M. O. Tokhi, “Multi-objective genetic algorithm optimisation approach for the geometrical design of an active noise control systems,” Int. J. Integr. Eng., vol. 1, no. 1, pp. 73–86, 2009.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.