491
Views
2
CrossRef citations to date
0
Altmetric
Review

A Recent Update on Drug Delivery Systems for Pain Management

Pages 175-214 | Received 18 Nov 2020, Accepted 29 Apr 2021, Published online: 22 Jun 2021

References

  • Merskey HE. Classification of chronic pain: Descriptions of chronic pain syndromés and definitions of pain terms. Pain. 1986; Suppl 3:226.
  • Breivik H, Collett B, Ventafridda V, Cohen R, Gallacher D. Survey of chronic pain in Europe: prevalence, impact on daily life, and treatment. Eur J Pain. 2006;10(4):287–333. doi:10.1016/j.ejpain.2005.06.009.
  • Basbaum AI, Bautista DM, Scherrer G, Julius D. Cellular and molecular mechanisms of pain. Cell. 2009;139(2):267–84. doi:10.1016/j.cell.2009.09.028.
  • Yan Y-y, Li C-y, Zhou L, Ao L-y, Fang W-r, Li Y-m. Research progress of mechanisms and drug therapy for neuropathic pain. Life Sci. 2017;190:68–77. doi:10.1016/j.lfs.2017.09.033.
  • Perl ER. Pain and nociception. In: Terjung R, ed. Comprehensive Physiology. 2011: 915–75.
  • Melzack R, Wall PD. Pain mechanisms: a new theory. Science. 1965;150(3699):971–9. doi:10.1126/science.150.3699.971.
  • Millan MJ. The induction of pain: an integrative review. Prog Neurobiol. 1999;57(1):1–164. doi:10.1016/S0301-0082(98)00048-3.
  • Dworkin RH, Grzesiak RC. Chronic pain. In: Stricker G, Gold JR, eds. Comprehensive Handbook of Psychotherapy Integration. Boston, MA: Springer US; 1993:365–84.
  • Carr DB, Goudas LC. Acute pain. The Lancet. 1999;353(9169):2051–8. doi:10.1016/S0140-6736(99)03313-9.
  • Gangadharan V, Kuner R. Pain hypersensitivity mechanisms at a glance. Dis Model Mech. 2013;6(4):889–95. doi:10.1242/dmm.011502.
  • Nahin RL. Estimates of pain prevalence and severity in adults: United States, 2012. J Pain. 2015;16(8):769–80. doi:10.1016/j.jpain.2015.05.002.
  • Livshits G, Malkin I, Freidin MB, Xia Y, Gao F, Wang J, Spector TD, MacGregor A, Bell JT, Williams FMK. Genome-wide methylation analysis of a large population sample shows neurological pathways involvement in chronic widespread musculoskeletal pain. Pain. 2017;158(6):1053–62. doi:10.1097/j.pain.0000000000000880.
  • Atkinson TJ, Fudin J. Nonsteroidal antiinflammatory drugs for acute and chronic pain. Phys Med Rehabil Clin N Am. 2020;31(2):219–31. doi:10.1016/j.pmr.2020.01.002.
  • Wongrakpanich S, Wongrakpanich A, Melhado K, Rangaswami J. A comprehensive review of non-steroidal anti-inflammatory drug use in the elderly. Aging Dis. 2018;9(1):143–50. doi:10.14336/AD.2017.0306.
  • Bach-Rojecky L, Vađunec D, Žunić K, Kurija J, Šipicki S, Gregg R, Mikula I, Primorac D. Continuing war on pain: a personalized approach to the therapy with nonsteroidal anti-inflammatory drugs and opioids. Per Med. 2019;16(2):171–84. doi:10.2217/pme-2018-0116.
  • Yaksh TL, Wallace MS. Opioids, analgesia, and pain management. In: Goodman and Gilman’s the Pharmacological Basis of Therapeutics. New York: McGraw-Hill Medical; 2011: 481–526.
  • Cohen B, Ruth LJ, Preuss CV. Opioid analgesics. StatPearls [Internet]. StatPearls Publishing; 2020.
  • Crockett SD, Greer KB, Heidelbaugh JJ, Falck-Ytter Y, Hanson BJ, Sultan S. American Gastroenterological Association Institute Guideline on the Medical Management of Opioid-Induced Constipation. Gastroenterology. 2019;156(1):218–26. doi:10.1053/j.gastro.2018.07.016.
  • Calcaterra S, Glanz J, Binswanger IA. National trends in pharmaceutical opioid related overdose deaths ­compared to other substance related overdose deaths: 1999–2009. Drug Alcohol Depend. 2013;131(3):263–70. doi:10.1016/j.drugalcdep.2012.11.018.
  • Hesselink JMK. Cr845 (D), a kappa receptors agonist in phase III By CARA therapeutics: a case of ‘spin’ in scientific writing? J Pharmacol Clin Res. 2017;2(3):555588.
  • Singla N, Minkowitz H, Soergel D, Burt D, Subach RA, Salamea M, Fossler M, Skobieranda F. A randomized, Phase IIb study investigating oliceridine (TRV130), a novel µ-receptor G-protein pathway selective (μ-GPS) modulator, for the management of moderate to severe acute pain following abdominoplasty. JPR. 2017;10:2413–24. doi:10.2147/JPR.S137952.
  • Miyazaki T, Choi IY, Rubas W, Anand NK, Ali C, Evans J, Gursahani H, Hennessy M, Kim G, McWeeney D, et al. NKTR-181: a novel mu-opioid analgesic with inherently low abuse potential. J Pharmacol Exp Ther. 2017;363(1):104–13. doi:10.1124/jpet.117.243030.
  • Gillman P. Tricyclic antidepressant pharmacology and therapeutic drug interactions updated. Br J Pharmacol. 2007;151(6):737–48. doi:10.1038/sj.bjp.0707253.
  • Ross ELJN. The evolving role of antiepileptic drugs in treating neuropathic pain. Neurology. 2000;55(5 Suppl 1):S41–S6. discussion S54.
  • Cording M, Moore RA, Derry S, Wiffen PJ. Pregabalin for pain in fibromyalgia in adults. Cochrane Database Syst Rev. 2015;(7).
  • Scholz A. Mechanisms of (local) anaesthetics on voltage-gated sodium and other ion channels . Br J Anaesth. 2002;89(1):52–61. doi:10.1093/bja/aef163.
  • Teasell RW, Mehta S, Aubut J-AL, Foulon B, Wolfe DL, Hsieh JTC, Townson AF, Short C. Short C spinal cord injury rehabilitation evidence research team. A systematic review of pharmacologic treatments of pain after spinal cord injury. Arch Phys Med Rehabil. 2010;91(5):816–31. doi:10.1016/j.apmr.2010.01.022.
  • Flores MP, de Castro APCR, Nascimento JS. Topical analgesics. Braz J Anesthesiol. 2012;62(2):244–52. doi:10.1016/S0034-7094(12)70122-8.
  • Svendsen KB, Jensen TS, Bach FW. Does the cannabinoid dronabinol reduce central pain in multiple sclerosis? Randomised double blind placebo controlled crossover trial. BMJ. 2004;329(7460):253. doi:10.1136/bmj.38149.566979.AE.
  • Portenoy RK, Ganae-Motan ED, Allende S, Yanagihara R, Shaiova L, Weinstein S, McQuade R, Wright S, Fallon MT. Nabiximols for opioid-treated cancer patients with poorly-controlled chronic pain: a randomized, placebo-controlled, graded-dose trial. J Pain. 2012;13(5):438–49. doi:10.1016/j.jpain.2012.01.003.
  • Skrabek RQ, Galimova L, Ethans K, Perry D. Nabilone for the treatment of pain in fibromyalgia. J Pain. 2008;9(2):164–73. doi:10.1016/j.jpain.2007.09.002.
  • Hill KP. Medical marijuana for treatment of chronic pain and other medical and psychiatric problems: a clinical review. JAMA. 2015;313(24):2474–83. doi:10.1001/jama.2015.6199.
  • Park J, Park HJ. Botulinum toxin for the treatment of neuropathic pain. Toxins (Basel). 2017;9(9):260. doi:10.3390/toxins9090260.
  • Meng G, Wu N, Zhang C, Su R-B, Lu X-Q, Liu Y, Yun L-H, Zheng J-Q, Li J. Analgesic activity of ZC88, a novel N-type voltage-dependent calcium channel blocker, and its modulation of morphine analgesia, tolerance and dependence. Eur J Pharmacol. 2008;586(1-3):130–8. doi:10.1016/j.ejphar.2008.02.066.
  • Morisset V, Derjean D, Rugiero F, Owen D, Giblin G, Walls C, et al. CNV2197944: A novel potent and selective CaV2. 2 state-dependent blocker for evaluation in chronic pain. Neuroscience. 2011:12–6.
  • Zhu CZ, Vortherms TA, Zhang M, Xu J, Swensen AM, Niforatos W, Neelands T, Milicic I, Lewis LG, Zhong C, et al. Mechanistic insights into the analgesic efficacy of A-1264087, a novel neuronal Ca2+ channel blocker that reduces nociception in rat preclinical pain models. J Pain. 2014;15(4):387.e1–e14. doi:10.1016/j.jpain.2013.12.002.
  • Matthews EA, Bee LA, Stephens GJ, Dickenson AH. The Cav2. 3 calcium channel antagonist SNX‐482 reduces dorsal horn neuronal responses in a rat model of chronic neuropathic pain. Eur J Neurosci. 2007;25(12):3561–9. doi:10.1111/j.1460-9568.2007.05605.x.
  • Chen J, Jin T, Zhang H. Nanotechnology in chronic pain relief. Front Bioeng Biotechnol. 2020;8(682).
  • Papaleontiou M, Henderson J, Charles R, Turner BJ, Moore AA, Olkhovskaya Y, Amanfo L. Outcomes associated with opioid use in the treatment of chronic noncancer pain in older adults: a systematic review and meta‐analysis. J Am Geriatr Soc. 2010;58(7):1353–69. doi:10.1111/j.1532-5415.2010.02920.x.
  • Ricardo BM, Rajive AM, Nalini SM. Opioid ­complications and side effects. Pain Physician. 2008;11:S105–S20.
  • Beiranvand S, Eatemadi A, Karimi A. New updates pertaining to drug delivery of local anesthetics in particular bupivacaine using lipid nanoparticles. Nanoscale Res Lett. 2016;11(1):307. doi:10.1186/s11671-016-1520-8.
  • Trelle S, Reichenbach S, Wandel S, Hildebrand P, Tschannen B, Villiger PM, Egger M, Jüni P. Cardiovascular safety of non-steroidal anti-inflammatory drugs: network meta-analysis. BMJ. 2011;342:c7086. doi:10.1136/bmj.c7086.
  • Huscher D, Thiele K, Gromnica-Ihle E, Hein G, Demary W, Dreher R, Zink A, Buttgereit F. Dose-related patterns of glucocorticoid-induced side effects. Ann Rheum Dis. 2009;68(7):1119–24. doi:10.1136/ard.2008.092163.
  • Patel H, Panchal DR, Patel U, Brahmbhatt T, Suthar M. Matrix type drug delivery system: a review. J Pharm Sci Biosci Res. 2011;1(3):143–51.
  • Yang W-W, Pierstorff E. Reservoir-based polymer drug delivery systems. J Lab Autom. 2012;17(1):50–8. doi:10.1177/2211068211428189.
  • Lengyel M, Kállai-Szabó N, Antal V, Laki AJ, Antal I. Microparticles, microspheres, and microcapsules for advanced drug delivery. Sci Pharm. 2019;87(3):20. doi:10.3390/scipharm87030020.
  • Charifson PS, Walters WP. Acidic and basic drugs in medicinal chemistry: a perspective. J Med Chem. 2014;57(23):9701–17. doi:10.1021/jm501000a.
  • Manallack DT, Prankerd RJ, Yuriev E, Oprea TI, Chalmers DK. The significance of acid/base properties in drug discovery. Chem Soc Rev. 2013;42(2):485–96. doi:10.1039/c2cs35348b.
  • Wen H, Jung H, Li X. Drug delivery approaches in addressing clinical pharmacology-related issues: opportunities and challenges. Aaps J. 2015;17(6):1327–40. doi:10.1208/s12248-015-9814-9.
  • Overholser BR, Foster DR. Opioid pharmacokinetic drug-drug interactions. Am J Manag Care. 2011;17(Suppl 11):S276–S87.
  • Meier R, Thommes M, Rasenack N, Krumme M, Moll KP, Kleinebudde P. Simplified formulations with high drug loads for continuous twin-screw granulation. Int J Pharm. 2015;496(1):12–23. doi:10.1016/j.ijpharm.2015.05.060.
  • Tian Y, Jacobs E, Jones DS, McCoy CP, Wu H, Andrews GP. The design and development of high drug loading amorphous solid dispersion for hot-melt extrusion platform. Int J Pharm. 2020;586:119545. doi:10.1016/j.ijpharm.2020.119545.
  • Dasgupta N, Funk MJ, Proescholdbell S, Hirsch A, Ribisl KM, Marshall S. Cohort study of the impact of high-dose opioid analgesics on overdose mortality. Pain Med. 2016;17(1):85–98. doi:10.1111/pme.12907.
  • Volans G, Monaghan J, Colbridge M. Ibuprofen overdose. Int J Clin Pract Suppl. 2003;(135):54–60.
  • Sobczak Ł, Goryński K. Pharmacological aspects of over-the-counter opioid drugs misuse. Molecules. 2020;25(17):3905. doi:10.3390/molecules25173905.
  • Mirza AZ, Siddiqui FA. Nanomedicine and drug delivery: a mini review. Int Nano Lett. 2014;4(1):94. doi:10.1007/s40089-014-0094-7.
  • Kabanov AV, Lemieux P, Vinogradov S, Alakhov V. Pluronic® block copolymers: novel functional molecules for gene therapy. Adv Drug Del Rev. 2002;54(2):223–33. doi:10.1016/S0169-409X(02)00018-2.
  • Elzoghby AO, Vranic BZ, Samy WM, Elgindy NA. Swellable floating tablet based on spray-dried casein nanoparticles: near-infrared spectral characterization and floating matrix evaluation. Int J Pharm. 2015;491(1-2):113–22. doi:10.1016/j.ijpharm.2015.06.015.
  • Chen L-H, Cheng L-C, Doyle PS. Nanoemulsion-loaded capsules for controlled delivery of lipophilic active ingredients. Adv Sci (Weinh)). 2020;7(20):2001677. doi:10.1002/advs.202001677.
  • Möschwitzer J, Achleitner G, Pomper H, Müller RH. Development of an intravenously injectable chemically stable aqueous omeprazole formulation using nanosuspension technology. Eur J Pharm Biopharm. 2004;58(3):615–9. doi:10.1016/j.ejpb.2004.03.022.
  • Patiño-Herrera R, Louvier-Hernández JF, Escamilla-Silva EM, Chaumel J, Escobedo AGP, Pérez E. Prolonged release of metformin by SiO2 nanoparticles pellets for type II diabetes control. Eur J Pharm Sci. 2019;131:1–8. doi:10.1016/j.ejps.2019.02.003.
  • de Carvalho SM, Noronha CM, da Rosa CG, Sganzerla WG, Bellettini IC, Nunes MR, Bertoldi FC, Manique Barreto PL. PVA antioxidant nanocomposite films functionalized with alpha-tocopherol loaded solid lipid nanoparticles. Colloids Surf Physicochem Eng Aspects. 2019;581:123793. doi:10.1016/j.colsurfa.2019.123793.
  • Garg T, Rath G, Goyal AK. Biomaterials-based nanofiber scaffold: targeted and controlled carrier for cell and drug delivery. J Drug Target. 2015;23(3):202–21. doi:10.3109/1061186X.2014.992899.
  • Sharifi F, Sooriyarachchi AC, Altural H, Montazami R, Rylander MN, Hashemi N. Fiber based approaches as medicine delivery systems. ACS Biomater Sci Eng. 2016;2(9):1411–31. doi:10.1021/acsbiomaterials.6b00281.
  • Kowalewski T, Błoński S, Barral S. Experiments and modelling of electrospinning process. Bull Pol Acad Sci Tech Sci. 2005;385–94.
  • KenryLim CT. Nanofiber technology: current status and emerging developments. Prog Polym Sci. 2017;70:1–17. doi:10.1016/j.progpolymsci.2017.03.002.
  • Taghavi S, Larson R. Regularized thin-fiber model for nanofiber formation by centrifugal spinning. Phys Rev E. 2014;89(2):023011.
  • Mahalingam S, Edirisinghe M. Forming of polymer nanofibers by a pressurised gyration process. Macromol Rapid Commun. 2013;34(14):1134–9. doi:10.1002/marc.201300339.
  • Ikegame M, Tajima K, Aida T. Template synthesis of polypyrrole nanofibers insulated within one-dimensional silicate channels: hexagonal versus lamellar for recombination of polarons into bipolarons . Angew Chem Int Ed Engl. 2003;42(19):2154–7. doi:10.1002/anie.200250800.
  • Polat Y, Calisir M, Gungor M, Sagirli MN, Atakan R, Akgul Y, et al. Solution blown nanofibrous air filters modified with glass microparticles. J Ind Text. 2019;0(0):1–14.
  • Tseng Y-Y, Liu S-J. Nanofibers used for the delivery of analgesics. Nanomedicine (Lond)). 2015;10(11):1785–800. doi:10.2217/nnm.15.23.
  • He Y, Qin L, Fang Y, Dan Z, Shen Y, Tan G, Huang Y, Ma C. Electrospun PLGA nanomembrane: A novel formulation of extended-release bupivacaine delivery reducing postoperative pain. Mater Des. 2020; 193:108768. doi:10.1016/j.matdes.2020.108768.
  • Kao C-W, Lee D, Wu M-H, Chen J-K, He H-L, Liu S-J. Lidocaine/ketorolac-loaded biodegradable nanofibrous anti-adhesive membranes that offer sustained pain ­relief for surgical wounds. Int J Nanomedicine. 2017;12:5893–901. doi:10.2147/IJN.S140825.
  • Kao C-W, Tseng Y-Y, Liu K-S, Liu Y-W, Chen J-C, He H-L, Kau Y-C, Liu S-J. Anesthetics and human epidermal growth factor incorporated into anti-adhesive nanofibers provide sustained pain relief and promote healing of surgical wounds. Int J Nanomedicine. 2019;14:4007–16. doi:10.2147/IJN.S202402.
  • Godakanda VU, Li H, Alquezar L, Zhao L, Zhu L-M, de Silva R, de Silva KMN, Williams GR. Tunable drug release from blend poly(vinyl pyrrolidone)-ethyl cellulose nanofibers . Int J Pharm. 2019;562:172–9. doi:10.1016/j.ijpharm.2019.03.035.
  • Vatankhah E. Rosmarinic acid-loaded electrospun nanofibers: In vitro release kinetic study and bioactivity assessment. Eng Life Sci. 2018;18(10):732–42. doi:10.1002/elsc.201800046.
  • Bhagwan J, Kumar N, Sharma Y. Chapter 13 - Fabrication, Characterization, and Optimization of MnxOy Nanofibers for Improved Supercapacitive Properties. In: Beeran Pottathara Y, Thomas S, Kalarikkal N, Grohens Y, Kokol V, eds. Nanomaterials Synthesis. Elsevier; 2019: 451–81.
  • Kumar B, Smita K, Cumbal L, Debut A. Green synthesis of silver nanoparticles using Andean blackberry fruit extract. Saudi J Biol Sci. 2017;24(1):45–50. doi:10.1016/j.sjbs.2015.09.006.
  • Singh R, Lillard JW.Jr. Nanoparticle-based targeted drug delivery. Exp Mol Pathol. 2009;86(3):215–23. doi:10.1016/j.yexmp.2008.12.004.
  • Öztürk AA, Kıyan HT. Treatment of oxidative stress-induced pain and inflammation with dexketoprofen trometamol loaded different molecular weight chitosan nanoparticles: Formulation, characterization and anti-inflammatory activity by using in vivo HET-CAM assay. Microvasc Res. 2020;128:103961. doi:10.1016/j.mvr.2019.103961.
  • Javia A, Thakkar H. Intranasal delivery of tapentadol hydrochloride–loaded chitosan nanoparticles: formulation, characterisation and its in vivo evaluation. J Microencapsul. 2017;34(7):644–58. doi:10.1080/02652048.2017.1375038.
  • Shukla R, Handa M, Vasdev N, Singh DP, Kesharwani P. Chapter 15 - Nanomedicine in pain management. In: Kesharwani P, Taurin S, Greish K, eds. Theory and Applications of Nonparenteral Nanomedicines. Academic Press; 2021: 355–82.
  • Assali M, Shawahna R, Dayyeh S, Shareef M, Alhimony I-A. Dexamethasone-diclofenac loaded polylactide nanoparticles: Preparation, release and anti-inflammatory activity. Eur J Pharm Sci. 2018;122:179–84. doi:10.1016/j.ejps.2018.07.012.
  • Nagavarma B, Yadav HK, Ayaz A, Vasudha L, Shivakumar H. Different techniques for preparation of polymeric nanoparticles-a review. Asian J Pharm Clin Res. 2012;5(3):16–23.
  • Zhou J, Patel TR, Sirianni RW, Strohbehn G, Zheng M-Q, Duong N, Schafbauer T, Huttner AJ, Huang Y, Carson RE, et al. Highly penetrative, drug-loaded nanocarriers improve treatment of glioblastoma. Proc Natl Acad Sci U S A. 2013;110(29):11751–6. doi:10.1073/pnas.1304504110.
  • Chung Y-I, Kim JC, Kim YH, Tae G, Lee S-Y, Kim K, Kwon IC. The effect of surface functionalization of PLGA nanoparticles by heparin- or chitosan-conjugated Pluronic on tumor targeting . J Control Release. 2010;143(3):374–82. doi:10.1016/j.jconrel.2010.01.017.
  • Acharya G, Lee CH, Lee Y. Optimization of cardiovascular stent against restenosis: factorial design-based statistical analysis of polymer coating conditions. PLoS One. 2012;7(8):e43100. doi:10.1371/journal.pone.0043100.
  • Wang T, Hurwitz O, Shimada SG, Tian D, Dai F, Zhou J, Ma C, LaMotte RH. Anti-nociceptive effects of bupivacaine-encapsulated PLGA nanoparticles applied to the compressed dorsal root ganglion in mice. Neurosci Lett. 2018;668:154–8. doi:10.1016/j.neulet.2018.01.031.
  • Baskaran M, Baskaran P, Arulsamy N, Thyagarajan B. Preparation and evaluation of PLGA-coated capsaicin magnetic nanoparticles. Pharm Res. 2017;34(6):1255–63. doi:10.1007/s11095-017-2142-2.
  • Berrocoso E, Rey-Brea R, Fernández-Arévalo M, Micó JA, Martín-Banderas L. Single oral dose of cannabinoid derivate loaded PLGA nanocarriers relieves neuropathic pain for eleven days. Nanomed Nanotechnol Biol Med. 2017;13(8):2623–32. doi:10.1016/j.nano.2017.07.010.
  • Tobío M, Sánchez A, Vila A, Soriano I, Evora C, Vila-Jato JL, Alonso MJ. The role of PEG on the stability in digestive fluids and in vivo fate of PEG-PLA nanoparticles following oral administration. Colloids Surf B Biointerfaces. 2000;18(3-4):315–23. doi:10.1016/S0927-7765(99)00157-5.
  • Owens IID, Peppas NA. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int J Pharm. 2006;307(1):93–102. doi:10.1016/j.ijpharm.2005.10.010.
  • Dave V, Srivastava P, Sharma S, Bajaj J, Tak K. PEGylated PLA-Phospholipon 90G complex hybrid nanoparticles loaded with etoricoxib for effective treatment pain relief potential. Int J Polymeric Mater Polymeric Biomater. 2020;69(10):640–52. doi:10.1080/00914037.2019.1596914.
  • Katara R, Sachdeva S, Majumdar DK. Design, characterization, and evaluation of aceclofenac-loaded Eudragit RS 100 nanoparticulate system for ocular delivery. Pharm Dev Technol. 2019;24(3):368–79. doi:10.1080/10837450.2018.1486424.
  • Öztürk AA, Yenilmez E, Arslan R, Şenel B, Yazan Y. Dexketoprofen trometamol-loaded Kollidon® SR and Eudragit® RS 100 polymeric nanoparticles: formulation and in vitro-in vivo evaluation. Lat Am J Pharm. 2017;36(11):2153–65.
  • El-Habashy SE, Allam AN, El-Kamel AH. Ethyl cellulose nanoparticles as a platform to decrease ulcerogenic potential of piroxicam: formulation and in vitro/in vivo evaluation. Int J Nanomedicine. 2016;11:2369–80. doi:10.2147/IJN.S93354.
  • Patra JK, Das G, Fraceto LF, Campos EVR, Rodriguez-Torres MDP, Acosta-Torres LS, Diaz-Torres LA, Grillo R, Swamy MK, Sharma S, et al. Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnology. 2018;16(1):71. doi:10.1186/s12951-018-0392-8.
  • Mahmoudvand H, Khaksarian M, Ebrahimi K, Shiravand S, Jahanbakhsh S, Niazi M, Nadri S. Antinociceptive effects of green synthesized copper nanoparticles alone or in combination with morphine. Ann Med Surg. 2020;51:31–6. doi:10.1016/j.amsu.2019.12.006.
  • An H, Song Z, Li P, Wang G, Ma B, Wang X. Development of biofabricated gold nanoparticles for the treatment of alleviated arthritis pain. Appl Nanosci. 2020;10(2):617–22. doi:10.1007/s13204-019-01135-w.
  • Wu P-C, Hsiao H-T, Lin Y-C, Shieh D-B, Liu Y-C. The analgesia efficiency of ultrasmall magnetic iron oxide nanoparticles in mice chronic inflammatory pain model. Nanomedicine. 2017;13(6):1975–81. doi:10.1016/j.nano.2017.05.005.
  • De JW, Borm PJA. Drug delivery and nanoparticles: applications and hazards. Int J Nanomedicine. 2008;3(2):133–49.
  • Sánchez-López E, Guerra M, Dias-Ferreira J, Lopez-Machado A, Ettcheto M, Cano A, Espina M, Camins A, Garcia ML, Souto EB. Current applications of nanoemulsions in cancer therapeutics. Nanomaterials. 2019;9(6):821. doi:10.3390/nano9060821.
  • Nigam K, Gabrani R, Dang S. Nano-emulsion from capsaicin: formulation and characterization. Mater Today. 2019;18:869–78. doi:10.1016/j.matpr.2019.06.517.
  • Koroleva M, Nagovitsina T, Yurtov E. Nanoemulsions stabilized by non-ionic surfactants: stability and degradation mechanisms. Phys Chem Chem Phys. 2018;20(15):10369–77. doi:10.1039/c7cp07626f.
  • Azmi NAN, Elgharbawy AA, Motlagh SR, Samsudin N, Salleh HM. Nanoemulsions: factory for food, pharmaceutical and cosmetics. Processes. 2019;7(9):617. doi:10.3390/pr7090617.
  • Azizi M, Esmaeili F, Partoazar A, Ejtemaei Mehr S, Amani A. Efficacy of nano-and microemulsion-based topical gels in delivery of ibuprofen: an in vivo study. J Microencapsul. 2017;34(2):195–202. doi:10.1080/02652048.2017.1316324.
  • Jacob S, Nair AB, Shah J. Emerging role of nanosuspensions in drug delivery systems. Biomater Res. 2020;24(1):3. doi:10.1186/s40824-020-0184-8.
  • Rabinow BE. Nanosuspensions in drug delivery. Nat Rev Drug Discov. 2004;3(9):785–96. doi:10.1038/nrd1494.
  • Shegokar R, Müller RH. Nanocrystals: industrially feasible multifunctional formulation technology for poorly soluble actives. Int J Pharm. 2010;399(1-2):129–39. doi:10.1016/j.ijpharm.2010.07.044.
  • Müller RH, Jacobs C, Kayser O. Nanosuspensions as particulate drug formulations in therapy: rationale for development and what we can expect for the future. Adv Drug Del Rev. 2001;47(1):3–19. doi:10.1016/S0169-409X(00)00118-6.
  • Oktay AN, Tamer SI, Han S, Uludag O, Celebi N. Preparation and in vitro/in vivo evaluation of flurbiprofen nanosuspension-based gel for dermal application. Eur J Pharm Sci. 2020; 155:105548. doi:10.1016/j.ejps.2020.105548.
  • Donnelly RF, Larrañeta E. Microarray patches: potentially useful delivery systems for long-acting nanosuspensions. Drug Discov Today. 2018;23(5):1026–33. doi:10.1016/j.drudis.2017.10.013.
  • Müller RH, Radtke M, Wissing SA. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations. Adv Drug Del Rev. 2002;54:S131–S55. doi:10.1016/S0169-409X(02)00118-7.
  • Wissing SA, Müller RH. The influence of solid lipid nanoparticles on skin hydration and viscoelasticity–in vivo study. Eur J Pharm Biopharm. 2003;56(1):67–72. doi:10.1016/S0939-6411(03)00040-7.
  • Akbari J, Saeedi M, Morteza-Semnani K, Rostamkalaei SS, Asadi M, Asare-Addo K, Nokhodchi A. The design of naproxen solid lipid nanoparticles to target skin layers. Colloids Surf B Biointerfaces. 2016;145:626–33. doi:10.1016/j.colsurfb.2016.05.064.
  • Kaur A, Goindi S, Katare OP. Formulation, characterisation and in vivo evaluation of lipid-based nanocarrier for topical delivery of diflunisal. J Microencapsul. 2016;33(5):475–86. doi:10.1080/02652048.2016.1216189.
  • Yoon G, Park JW, Yoon I-S. Solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs): recent advances in drug delivery. Int J Pharm Investig. 2013;43(5):353–62. doi:10.1007/s40005-013-0087-y.
  • Ghasemiyeh P, Mohammadi-Samani S. Solid lipid nanoparticles and nanostructured lipid carriers as novel drug delivery systems: applications, advantages and disadvantages. Res Pharm Sci. 2018;13(4):288–303. doi:10.4103/1735-5362.235156.
  • Makwana V, Jain R, Patel K, Nivsarkar M, Joshi A. Solid lipid nanoparticles (SLN) of Efavirenz as lymph targeting drug delivery system: Elucidation of mechanism of uptake using chylomicron flow blocking approach. Int J Pharm. 2015;495(1):439–46. doi:10.1016/j.ijpharm.2015.09.014.
  • Pople PV, Singh KK. Development and evaluation of colloidal modified nanolipid carrier: application to topical delivery of tacrolimus. Eur J Pharm Biopharm. 2011;79(1):82–94. doi:10.1016/j.ejpb.2011.02.016.
  • Pople PV, Singh KK. Development and evaluation of colloidal modified nanolipid carrier: Application to topical delivery of tacrolimus, Part II–In vivo assessment, drug targeting, efficacy, and safety in treatment for atopic dermatitis. Eur J Pharm Biopharm. 2013;84(1):72–83. doi:10.1016/j.ejpb.2012.11.026.
  • Lopes-de-Araújo J, Neves AR, Gouveia VM, Moura CC, Nunes C, Reis S. Oxaprozin-loaded lipid nanoparticles towards overcoming NSAIDs side-effects. Pharm Res. 2016;33(2):301–14. doi:10.1007/s11095-015-1788-x.
  • Tambe S, Jain D, Agarwal Y, Amin P. Hot-melt extrusion: highlighting recent advances in pharmaceutical applications. J Drug Deliv Sci Technol. 2021; 63:102452. doi:10.1016/j.jddst.2021.102452.
  • Rincón M, Calpena AC, Clares B, Espina M, Garduño-Ramírez ML, Rodríguez-Lagunas MJ, García ML, Abrego G. Skin-controlled release lipid nanosystems of pranoprofen for the treatment of local inflammation and pain. Nanomedicine (Lond). 2018;13(19):2397–413. doi:10.2217/nnm-2018-0195.
  • Kang Q, Liu J, Zhao Y, Liu X, Liu X-Y, Wang Y-J, Mo N-L, Wu Q. Transdermal delivery system of nanostructured lipid carriers loaded with Celastrol and Indomethacin: optimization, characterization and efficacy evaluation for rheumatoid arthritis. Artif Cells Nanomed Biotechnol. 2018;46(sup3):S585–S97. doi:10.1080/21691401.2018.1503599.
  • Yue Y, Zhao D, Yin Q. Hyaluronic acid modified nanostructured lipid carriers for transdermal bupivacaine delivery: In vitro and in vivo anesthesia evaluation. Biomed Pharmacother. 2018;98:813–20. doi:10.1016/j.biopha.2017.12.103.
  • Otarola JJ, Solis AKC, Farias ME, Garrido M, Correa NM, Molina PG. Piroxicam-loaded nanostructured lipid carriers gel: design and characterization by square wave voltammetry. Colloids Surf Physicochem Eng Aspects. 2020;606:125396. doi:10.1016/j.colsurfa.2020.125396.
  • Garg NK, Sharma G, Singh B, Nirbhavane P, Tyagi RK, Shukla R, Katare OP. Quality by Design (QbD)-enabled development of aceclofenac loaded-nano structured lipid carriers (NLCs): An improved dermatokinetic profile for inflammatory disorder (s). Int J Pharm. 2017;517(1-2):413–31. doi:10.1016/j.ijpharm.2016.12.010.
  • Bawazeer S, El-Telbany DFA, Al-Sawahli MM, Zayed G, Keed AAA, Abdelaziz AE, Abdel-Naby DH. Effect of nanostructured lipid carriers on transdermal delivery of tenoxicam in irradiated rats. Drug Deliv. 2020;27(1):1218–30. doi:10.1080/10717544.2020.1803448.
  • Nguyen CN, Nguyen TTT, Nguyen HT, Tran TH. Nanostructured lipid carriers to enhance transdermal delivery and efficacy of diclofenac. Drug Deliv Transl Res. 2017;7(5):664–73. doi:10.1007/s13346-017-0415-2.
  • Mishra RK, Ahmad A, Kumar A, Vyawahare A, Raza SS, Khan R. Lipid-based nanocarrier-mediated targeted delivery of celecoxib attenuate severity of ulcerative colitis. Mater Sci Eng, C. 2020; 116:111103. doi:10.1016/j.msec.2020.111103.
  • Eleraky NE, M, Omar M, A, Mahmoud H, A, Abou-Taleb H. Nanostructured Lipid Carriers to Mediate Brain Delivery of Temazepam: Design and In Vivo Study. Pharmaceutics. 2020;12(5):451.
  • Da Silva GH, de Morais Ribeiro LN, Guilherme VA, de Castro SR, Breitkreitz MC, de Paula E. Bupivacaine (S75: R25) loaded in nanostructured lipid carriers: factorial design, HPLC quantification method and physicochemical stability study. CDD. 2018;15(3):388–96. doi:10.2174/1567201814666170726101113.
  • Sinhmar GK, Shah NN, Chokshi NV, Khatri HN, Patel MM. Process, optimization, and characterization of budesonide-loaded nanostructured lipid carriers for the treatment of inflammatory bowel disease. Drug Dev Ind Pharm. 2018;44(7):1078–89. doi:10.1080/03639045.2018.1434194.
  • Zhang Y, Yue Y, Chang M. Local anaesthetic pain relief therapy: in vitro and in vivo evaluation of a nanotechnological formulation co-loaded with ropivacaine and dexamethasone. Biomed Pharmacother. 2017;96:443–9. doi:10.1016/j.biopha.2017.09.124.
  • Rincón M, Calpena A, Fabrega M-J, Garduño-Ramírez M, Espina M, Rodríguez-Lagunas M, García M, Abrego G. Development of pranoprofen loaded nanostructured lipid carriers to improve its release and therapeutic efficacy in skin inflammatory disorders. Nanomaterials. 2018;8(12):1022. doi:10.3390/nano8121022.
  • Gao S, Tian B, Han J, Zhang J, Shi Y, Lv Q, Li K. Enhanced transdermal delivery of lornoxicam by nanostructured lipid carrier gels modified with polyarginine peptide for treatment of carrageenan-induced rat paw edema. IJN. 2019;14:6135–50. doi:10.2147/IJN.S205295.
  • Wang X-R, Gao S-Q, Niu X-Q, Li L-J, Ying X-Y, Hu Z-J, Gao J-Q. Capsaicin-loaded nanolipoidal carriers for topical application: design, characterization, and in vitro/in vivo evaluation. Int J Nanomed. 2017;12:3881–98. doi:10.2147/IJN.S131901.
  • Sütő B, Berkó S, Kozma G, Kukovecz Á, Budai-Szűcs M, Erős G, Kemény L, Sztojkov-Ivanov A, Gáspár R, Csányi E, et al. Development of ibuprofen-loaded nanostructured lipid carrier-based gels: characterization and investigation of in vitro and in vivo penetration through the skin. Int J Nanomed. 2016;11:1201–12. doi:10.2147/IJN.S99198.
  • Chauhan I, Yasir M, Verma M, Singh AP. Nanostructured lipid carriers: a groundbreaking approach for transdermal drug delivery. Adv Pharm Bull. 2020;10(2):150–65. doi:10.34172/apb.2020.021.
  • Jaiswal P, Gidwani B, Vyas A. Nanostructured lipid carriers and their current application in targeted drug delivery. Artif Cells Nanomed Biotechnol. 2016;44(1):27–40. doi:10.3109/21691401.2014.909822.
  • Sardana V, Burzynski J, Zalzal P. Safety and efficacy of topical ketoprofen in transfersome gel in knee osteoarthritis: a systematic review. Musculoskeletal Care. 2017;15(2):114–21. doi:10.1002/msc.1163.
  • Bnyan R. Novel lipid-based vesicles for sustained buccal delivery of a local anaesthetic for oral pain relief [Doctoral dissertation]. Liverpool L2 2QP, United Kingdom: Liverpool John Moores University; 2020.
  • Tawfeek HM, Abdellatif AA, Abdel-Aleem JA, Hassan YA, Fathalla D. Transfersomal gel nanocarriers for enhancement the permeation of lornoxicam. J Drug Deliv Sci Technol. 2020;56:101540. doi:10.1016/j.jddst.2020.101540.
  • Dudhipala N, Phasha Mohammed R, Adel Ali Youssef A, Banala N. Effect of lipid and edge activator concentration on development of aceclofenac-loaded transfersomes gel for transdermal application: in vitro and ex vivo skin permeation. Drug Dev Ind Pharm. 2020;46(8):1334–44. doi:10.1080/03639045.2020.1788069.
  • Bnyan R, Khan I, Ehtezazi T, Saleem I, Gordon S, O’Neill F, Roberts M. Formulation and optimisation of novel transfersomes for sustained release of local anaesthetic. J Pharm Pharmacol. 2019;71(10):1508–19. doi:10.1111/jphp.13149.
  • Negi P, Aggarwal M, Sharma G, Rathore C, Sharma G, Singh B, Katare OP. Niosome-based hydrogel of resveratrol for topical applications: an effective therapy for pain related disorder (s). Biomed Pharmacother. 2017;88:480–7. doi:10.1016/j.biopha.2017.01.083.
  • Marzoli F, Marianecci C, Rinaldi F, Passeri D, Rossi M, Minosi P, Carafa M, Pieretti S. Long-lasting, antinociceptive effects of pH-sensitive niosomes loaded with ibuprofen in acute and chronic models of pain. Pharmaceutics. 2019;11(2):62. doi:10.3390/pharmaceutics11020062.
  • Rinaldi F, Del Favero E, Rondelli V, Pieretti S, Bogni A, Ponti J, Rossi F, Di Marzio L, Paolino D, Marianecci C, et al. pH-sensitive niosomes: effects on cytotoxicity and on inflammation and pain in murine models. J Enzyme Inhib Med Chem. 2017;32(1):538–46. doi:10.1080/14756366.2016.1268607.
  • Paradkar M, Vaghela S. Thiocolchicoside niosomal gel formulation for the pain management of rheumatoid arthritis through topical drug delivery. DDL. 2018;8(2):159–68. doi:10.2174/2210303108666180216151234.
  • Madni A, Rahim MA, Mahmood MA, Jabar A, Rehman M, Shah H, Khan A, Tahir N, Shah A. Enhancement of dissolution and skin permeability of pentazocine by proniosomes and niosomal gel. AAPS PharmSciTech. 2018;19(4):1544–53. doi:10.1208/s12249-018-0967-6.
  • Ibrahim MM, Shehata TM. Tramadol HCl encapsulated niosomes for extended analgesic effect following oral administration. J Drug Deliv Sci Technol. 2018;46:14–8. doi:10.1016/j.jddst.2018.04.011.
  • Ravalika V, Sailaja AK. Formulation and evaluation of etoricoxib niosomes by thin film hydration technique and ether injection method. Nano BioMed Eng. 2017;9(3):242–8. doi:10.5101/nbe.v9i3.p242-248.
  • Duangjit S, Nimcharoenwan T, Chomya N, Locharoenrat N, Ngawhirunpat T. Design and development of optimal invasomes for transdermal drug delivery using computer program. Asian J Pharm Sci. 2016;11(1):52–3. doi:10.1016/j.ajps.2015.10.039.
  • Dreier J, Sørensen JA, Brewer JR. Superresolution and fluorescence dynamics evidence reveal that intact liposomes do not cross the human skin barrier. PLoS One. 2016;11(1):e0146514. doi:10.1371/journal.pone.0146514.
  • Brewer J, Bloksgaard M, Kubiak J, Sørensen JA, Bagatolli LA. Spatially resolved two-color diffusion measurements in human skin applied to transdermal liposome penetration. J Invest Dermatol. 2013;133(5):1260–8. doi:10.1038/jid.2012.461.
  • Gabizon AA, Shmeeda H, Zalipsky S. Pros and cons of the liposome platform in cancer drug targeting. J Liposome Res. 2006;16(3):175–83. doi:10.1080/08982100600848769.
  • Daraee H, Etemadi A, Kouhi M, Alimirzalu S, Akbarzadeh A. Application of liposomes in medicine and drug delivery. Artif Cells Nanomed Biotechnol. 2016;44(1):381–91. doi:10.3109/21691401.2014.953633.
  • Cevc G, Gebauer D. Hydration-driven transport of deformable lipid vesicles through fine pores and the skin barrier. Biophys J. 2003;84(2 Pt 1):1010–24. doi:10.1016/S0006-3495(03)74917-0.
  • Zhang J, Zhu S, Tan Q, Cheng D, Dai Q, Yang Z, Zhang L, Li F, Zuo Y, Dai W, et al. Combination therapy with ropivacaine-loaded liposomes and nutrient deprivation for simultaneous cancer therapy and cancer pain relief. Theranostics. 2020;10(11):4885–99. doi:10.7150/thno.43932.
  • Nagayasu A, Uchiyama K, Kiwada H. The size of liposomes: a factor which affects their targeting efficiency to tumors and therapeutic activity of liposomal antitumor drugs. Adv Drug Del Rev. 1999;40(1-2):75–87. doi:10.1016/S0169-409X(99)00041-1.
  • Goh JZ, Tang SN, Chiong HS, Yong YK, Zuraini A, Hakim MN. Evaluation of antinociceptive activity of nanoliposome-encapsulated and free-form diclofenac in rats and mice. Int J Nanomedicine. 2015;10(297)
  • Rose JS, Neal JM, Kopacz DJ. Extended-duration analgesia: update on microspheres and liposomes. Reg Anesth Pain Med. 2005;30(3):275–85. doi:10.1097/00115550-200505000-00010.
  • Xiong S, George S, Yu H, Damoiseaux R, France B, Ng KW, Loo JS-C. Size influences the cytotoxicity of poly (lactic-co-glycolic acid)(PLGA) and titanium dioxide (TiO 2) nanoparticles. Arch Toxicol. 2013;87(6):1075–86. doi:10.1007/s00204-012-0938-8.
  • Nel A, Xia T, Meng H, Wang X, Lin S, Ji Z, Zhang H. Nanomaterial toxicity testing in the 21st century: use of a predictive toxicological approach and high-throughput screening. Acc Chem Res. 2013;46(3):607–21. doi:10.1021/ar300022h.
  • Magdolenova Z, Collins A, Kumar A, Dhawan A, Stone V, Dusinska M. Mechanisms of genotoxicity. A review of in vitro and in vivo studies with engineered nanoparticles. Nanotoxicology. 2014;8(3):233–78. doi:10.3109/17435390.2013.773464.
  • Tekade RK, Maheshwari R, Soni N, Tekade M, Chougule MB. Chapter 1 - Nanotechnology for the Development of Nanomedicine. In: Mishra V, Kesharwani P, Mohd Amin MCI, Iyer A, eds. Nanotechnology-Based Approaches for Targeting and Delivery of Drugs and Genes. Academic Press; 2017: 3–61.
  • Liu K-S, Chen W-H, Lee C-H, Su Y-F, Liu S-J. Extended pain relief achieved by analgesic-eluting biodegradable nanofibers in the Nuss procedure: In vitro and in vivo studies. Int J Nanomedicine. 2018;13:8355. doi:10.2147/IJN.S189505.
  • Reda RI, Wen MM, El-Kamel AH. Ketoprofen-loaded eudragit electrospun nanofibers for the treatment of oral mucositis. Int J Nanomedicine. 2017;12:2335. doi:10.2147/IJN.S131253.
  • Abid S, Hussain T, Nazir A, Zahir A, Khenoussi N. Acetaminophen loaded nanofibers as a potential contact layer for pain management in Burn wounds. Mater Res Express. 2018;5(8):085017. doi:10.1088/2053-1591/aad2eb.
  • Abid S, Hussain T, Nazir A, Zahir A, Khenoussi N. A novel double-layered polymeric nanofiber-based dressing with controlled drug delivery for pain management in burn wounds. Polym Bull. 2019;76(12):6387–411. doi:10.1007/s00289-019-02727-w.
  • Lee F-Y, Lee D, Lee T-C, Chen J-K, Wu R-C, Liu K-C, Liu S-J. Fabrication of multi-layered lidocaine and epinephrine-eluting PLGA/collagen nanofibers: in vitro and in vivo study. Polymers. 2017;9(12):416. doi:10.3390/polym9090416.
  • Chou Y-C, Cheng Y-S, Hsu Y-H, Yu Y-H, Liu S-J. Biodegradable nanofiber-membrane for sustainable release of lidocaine at the femoral fracture site as a periosteal block: In vitro and in vivo studies in a rabbit model. Colloids Surf B Biointerfaces. 2016;140:332–41. doi:10.1016/j.colsurfb.2016.01.011.
  • Nigam K, Kaur A, Tyagi A, Manda K, Gabrani R, Dang S. Baclofen-loaded poly (d, l-lactide-co-glycolic acid) nanoparticles for neuropathic pain management: in vitro and in vivo evaluation. Rejuvenation Res. 2019;22(3):235–45. doi:10.1089/rej.2018.2119.
  • vKim SR, Ho MJ, Kim SH, Cho HR, Kim HS, Choi YS, Choi YW, Kang MJ. Increased localized delivery of piroxicam by cationic nanoparticles after intra-articular injection. DDDT. 2016;10:3779–87. doi:10.2147/DDDT.S118145.
  • Nigam K, Kaur A, Tyagi A, Nematullah M, Khan F, Gabrani R, et al. Nose-to-brain delivery of lamotrigine-loaded PLGA nanoparticles. Drug Dev Transl Res. 2019;9(5):879–90. doi:10.1007/s13346-019-00622-5.
  • Kovaliov M, Li S, Korkmaz E, Cohen-Karni D, Tomycz N, Ozdoganlar OB, Averick S. Extended-release of opioids using fentanyl-based polymeric nanoparticles for enhanced pain management. RSC Adv. 2017;7(76):47904–12. doi:10.1039/C7RA08450A.
  • Kassick AJ, Allen HN, Yerneni SS, Pary F, Kovaliov M, Cheng C, et al. Covalent poly (lactic acid) nanoparticles for the sustained delivery of naloxone. ACS Appl Bio Mater. 2019;2(8):3418–28. doi:10.1021/acsabm.9b00380.
  • Wang Z, Huang H, Yang S, Huang S, Guo J, Tang Q, et al. Long-term effect of ropivacaine nanoparticles for sciatic nerve block on postoperative pain in rats. Int J Nanomedicine. 2016;11(2081).
  • Pawar V, Srivastava R, editors. Layered assembly of chitosan nanoparticles and alginate gel for management of post-surgical pain and infection. 2016 IEEE 16th International Conference on Nanotechnology (IEEE-NANO). 2016. Sendai, Japan: IEEE. doi:10.1109/NANO.2016.7751388.
  • Moradkhani MR, Karimi A. Effect of Artemisia aucheri. L and bupivacaine encapsulated nanoparticles on nociceptive pain. Drug Res. 2019;69(07):401–5. doi:10.1055/a-0825-6487.
  • Catanzano O, Docking R, Schofield P, Boateng J. Advanced multi-targeted composite biomaterial dressing for pain and infection control in chronic leg ulcers. Carbohydr Polym. 2017;172:40–8. doi:10.1016/j.carbpol.2017.05.040.
  • Janjic JM, Vasudeva K, Saleem M, Stevens A, Liu L, Patel S, et al. Low-dose NSAIDs reduce pain via macrophage targeted nanoemulsion delivery to neuroinflammation of the sciatic nerve in rat. J Neuroimmunol. 2018;318:72–9. doi:10.1016/j.jneuroim.2018.02.010.
  • Quintans-Júnior LJ, Brito RG, Quintans JS, Santos PL, Camargo ZT, Barreto PA, et al. Nanoemulsion thermoreversible pluronic F127-based hydrogel containing Hyptis pectinata (Lamiaceae) leaf essential oil produced a lasting anti-hyperalgesic effect in chronic noninflammatory widespread pain in mice. Mol Neurobiol. 2018;55(2):1665–75. doi:10.1007/s12035-017-0438-1.
  • Ye L, Miao M, Li S, Hao K. Nanosuspensions of a new compound, ER-β005, for enhanced oral bioavailability and improved analgesic efficacy. Int J Pharm. 2017;531(1):246–56. doi:10.1016/j.ijpharm.2017.08.103.
  • Jeong SC, Kim DS, Jin SG, Youn YS, Oh KT, Li DX, et al. Development of a novel celecoxib-loaded nanosuspension using a wet media milling process. Die Pharmazie. 2018;73(9):498–502.
  • Shomorony A, Santamaria CM, Zhao C, Rwei AY, Mehta M, Zurakowski D, et al. Prolonged duration local anesthesia by combined delivery of capsaicin-and tetrodotoxin-loaded liposomes. Anesth Analg. 2019;129(3):709–17.
  • Zhao X, Sun Y, Li Z. Topical anesthesia therapy using lidocaine-loaded nanostructured lipid carriers: tocopheryl polyethylene glycol 1000 succinate-modified transdermal delivery system. Drug Des Devel Ther. 2018;12:4231–40. doi:10.2147/DDDT.S187177.
  • Bahrami MA, Farhadian N, Karimi M, Forouzan A, Masoumi K. Improvement of pain relief of fentanyl citrate drug encapsulated in nanostructured lipid carrier: drug formulation, parameter optimization, in vitro and in vivo studies. Drug Des Devel Ther. 2020;14:2033–45. doi:10.2147/DDDT.S235474.
  • Ribeiro LNM, Franz-Montan M, Breitkreitz MC, Alcântara ACS, Castro SR, Guilherme VA, et al. Nanostructured lipid carriers as robust systems for topical lidocaine-prilocaine release in dentistry. Eur J Pharm Sci. 2016;93:192–202. doi:10.1016/j.ejps.2016.08.030.
  • de M. Barbosa R, Ribeiro L, Casadei B, da Silva C, Queiróz V, Duran N, de Araújo D, Severino P, de Paula E. Solid lipid nanoparticles for dibucaine sustained release. Pharmaceutics. 2018;10(4):231. doi:10.3390/pharmaceutics10040231.
  • Abbasnia M, Vatanara AR, Mahjub R. Preparation, statistical optimization and in vitro characterization of solid lipid nanoparticles as a potential vehicle for transdermal delivery of tramadol hydrochloride as a hydrophilic compound. Nanomed Res J. 2020;5(2):120–31.
  • Anantaworasakul P, Chaiyana W, Michniak-Kohn BB, Rungseevijitprapa W, Ampasavate C. Enhanced transdermal delivery of concentrated capsaicin from chili extract-loaded lipid nanoparticles with reduced skin irritation. Pharmaceutics. 2020;12(5):463. doi:10.3390/pharmaceutics12050463.
  • Yang Q, Forrest L. Drug delivery to the lymphatic system. In: Wang B, Hu L, Siahaan TJ, eds. Drug Delivery: Principles and Applications. 2nd ed. Hoboken, New Jersey: John Wiley & Sons, Inc.; 2016: 503–48.
  • Desai T, Shea LD. Advances in islet encapsulation technologies. Nat Rev Drug Discov. 2017;16(5):338–50. doi:10.1038/nrd.2016.232.
  • de Araújo DR, da Silva DC, Barbosa RM, Franz-Montan M, Cereda CMS, Padula C, Santi P, de Paula E. Strategies for delivering local anesthetics to the skin: focus on liposomes, solid lipid nanoparticles, hydrogels and patches. Expert Opin Drug Deliv. 2013;10(11):1551–63. doi:10.1517/17425247.2013.828031.
  • Grillo R, de Melo NF, de Araújo DR, de Paula E, Rosa AH, Fraceto LF. Polymeric alginate nanoparticles containing the local anesthetic bupivacaine. J Drug Target. 2010;18(9):688–99. doi:10.3109/10611861003649738.
  • Ma P, Li T, Xing H, Wang S, Sun Y, Sheng X, Wang K. Local anesthetic effects of bupivacaine loaded lipid-polymer hybrid nanoparticles: in vitro and in vivo evaluation. Biomed Pharmacother. 2017;89:689–95. doi:10.1016/j.biopha.2017.01.175.
  • Makadia HK, Siegel SJ. Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers (Basel). 2011;3(3):1377–97. doi:10.3390/polym3031377.
  • McAlvin JB, Padera RF, Shankarappa SA, Reznor G, Kwon AH, Chiang HH, Yang J, Kohane DS. Multivesicular liposomal bupivacaine at the sciatic nerve. Biomaterials. 2014;35(15):4557–64. doi:10.1016/j.biomaterials.2014.02.015.
  • Kohane DS, Lipp M, Kinney RC, Anthony DC, Louis DN, Lotan N, Langer R. Biocompatibility of lipid‐protein‐sugar particles containing bupivacaine in the epineurium. J Biomed Mater Res. 2002;59(3):450–9. doi:10.1002/jbm.1261.
  • McAlvin JB, Reznor G, Shankarappa SA, Stefanescu CF, Kohane DS. Local toxicity from local anesthetic ­polymeric microparticles. Anesth Analg. 2013;116(4):794–803. doi:10.1213/ANE.0b013e31828174a7.
  • Bale S, Khurana A, Reddy ASS, Singh M, Godugu C. Overview on therapeutic applications of microparticulate drug delivery systems. Crit Rev Ther Drug Carrier Syst. 2016;33(4):309–61. doi:10.1615/CritRevTherDrugCarrierSyst.2016015798.
  • Tian X, Zhu H, Du S, Zhang X-Q, Lin F, Ji F, Tsou Y-H, Li Z, Feng Y, Ticehurst K, et al. Injectable PLGA-coated ropivacaine produces a long-lasting analgesic effect on incisional pain and neuropathic pain. J Pain. 2021;22(2):180–95. doi:10.1016/j.jpain.2020.03.009.
  • Padalkar DA, Shahi S, Thube Patil M. Micro particles: an approach for betterment of drug delivery system. Int J Pharm Res Dev. 2011;3(1):99–115.
  • Yehia SA, Abdel-Halim SA, Aziz MY. Formulation and evaluation of injectable in situ forming microparticles for sustained delivery of lornoxicam. Drug Dev Ind Pharm. 2017;43(2):319–28. doi:10.1080/03639045.2016.1241259.
  • Sakurai H, Ikeuchi-Takahashi Y, Kobayashi A, Yoshimura N, Ishihara C, Aomori T, Onishi H. Formulation Development of Mucoadhesive Microparticle-Laden Gels for Oral Mucositis: An In Vitro and In Vivo Study. Pharmaceutics. 2020;12(7):603. doi:10.3390/pharmaceutics12070603.
  • Gaware S, Bala P, Dhobale S, Joshi A, Wagh N, Pal K, Kale SN. Studies on control of erratic release of ketoprofen from commercial patches for sustained pain-relief using silica microparticles. NHC. 2016;12:88–97. doi:10.4028/www.scientific.net/NHC.12.88.
  • Whelehan M, Marison IW. Microencapsulation using vibrating technology. J Microencapsul. 2011;28(8):669–88. doi:10.3109/02652048.2011.586068.
  • Kim KK, Pack DW. Microspheres for drug delivery. In: Ferrari M, Lee AP, Lee LJ, eds. BioMEMS and Biomedical Nanotechnology: Volume I Biological and Biomedical Nanotechnology. Boston, MA: Springer US; 2006: 19–50.
  • Liu Q-R, Dai Y-C, Ji L-J, Gong M-D, Li X, Fang J, Yang J-J. Preparation of ropivacaine-loaded mesoporous bioactive glass microspheres and evaluation of their efficacy for sciatic nerve block. J Drug Deliv Sci Technol. 2020;58:101810. doi:10.1016/j.jddst.2020.101810.
  • Ni Q, Chen W, Tong L, Cao J, Ji C. Preparation of novel biodegradable ropivacaine microspheres and evaluation of their efficacy in sciatic nerve block in mice. Drug Des Devel Ther. 2016;10:2499. doi:10.2147/DDDT.S110742.
  • Kao H-W, Lin Y-Y, Gwathney WJ, Hong K. Formulation and evaluation of multilamellar vesicles ropivacaine in pain management. Int J Nanomedicine. 2019;14:7891. doi:10.2147/IJN.S215952.
  • Chai F, Maton M, Degoutin S, Vermet G, Simon N, Rousseaux C, et al. In vivo evaluation of post-operative pain reduction on rat model after implantation of ­intraperitoneal PET meshes functionalised with ­cyclodextrins and loaded with ropivacaine. Biomaterials. 2019;192:260–70. doi:10.1016/j.biomaterials.2018.07.032.
  • Hawkins S, Wolf M, Guyard G, Greenberg S, Dayan N. 9 - Microcapsules as a delivery system. In: Rosen MR, ed. Delivery System Handbook for Personal Care and Cosmetic Products. Norwich, NY: William Andrew Publishing; 2005: 191–213.
  • Baek J-S, Yeo EW, Lee YH, Tan NS, Loo SCJ. Controlled-release nanoencapsulating microcapsules to combat inflammatory diseases. Drug Des Devel Ther. 2017;11:1707. doi:10.2147/DDDT.S133344.
  • Kopach O, Zheng K, Dong L, Sapelkin A, Voitenko N, Sukhorukov GB, et al. Nano-engineered microcapsules boost the treatment of persistent pain. Drug Deliv. 2018;25(1):435–47. doi:10.1080/10717544.2018.1431981.
  • Ceglie A, Das K, Lindman B. Effect of oil on the microscopic structure in four-component cosurfactant microemulsions. J Colloid Interface Sci. 1987;115(1):115–20. doi:10.1016/0021-9797(87)90015-4.
  • Kreilgaard M. Influence of microemulsions on cutaneous drug delivery. Adv Drug Del Rev. 2002;54:S77–S98. doi:10.1016/S0169-409X(02)00116-3.
  • Callender SP, Mathews JA, Kobernyk K, Wettig SD. Microemulsion utility in pharmaceuticals: Implications for multi-drug delivery. Int J Pharm. 2017;526(1):425–42. doi:10.1016/j.ijpharm.2017.05.005.
  • Zhang J, Froelich A, Michniak-Kohn B. Topical delivery of meloxicam using liposome and microemulsion formulation approaches. Pharmaceutics. 2020;12(3):282. doi:10.3390/pharmaceutics12030282.
  • Subongkot T, Sirirak T. Development and skin penetration pathway evaluation of microemulsions for enhancing the dermal delivery of celecoxib. Colloids Surf B Biointerfaces. 2020; 193:111103. doi:10.1016/j.colsurfb.2020.111103.
  • Zhang D, Ye D, Jing P, Tan X, Qiu L, Li T, et al. Design, optimization and evaluation of co-surfactant free microemulsion-based hydrogel with low surfactant for enhanced transdermal delivery of lidocaine. Int J Pharm. 2020;586:119415. doi:10.1016/j.ijpharm.2020.119415.
  • Zhu M, Whittaker AK, Smith MT, Han FY. Bioerodable ketamine-loaded microparticles fabricated using dissolvable hydrogel template technology. J Pharm Sci. 2019;108(3):1220–6. doi:10.1016/j.xphs.2018.10.029.
  • Han F, Whittaker A, Howdle S, Naylor A, Shabir-Ahmed A, Zhang C, Smith M. Formulation of bioerodible ketamine microparticles as an analgesic adjuvant treatment produced by supercritical fluid polymer encapsulation. Pharmaceutics. 2018;10(4):264. doi:10.3390/pharmaceutics10040264.
  • Dai H, Tilley DM, Mercedes G, Doherty C, Gulati A, Mehta N, Khalil A, Holzhaus K, Reynolds FM. Opiate‐free pain therapy using carbamazepine‐loaded microparticles provides up to 2 weeks of pain relief in a neuropathic pain model. Pain Pract. 2018;18(8):1024–35. doi:10.1111/papr.12705.
  • Shepherd SD, O’Buckley SC, Harrington JM, Haines LG, Rothrock GD, Johnson LM, Nackley AG. A moldable sustained release bupivacaine formulation for tailored treatment of postoperative dental pain. Sci Rep. 2018;8(1):1–9. doi:10.1038/s41598-018-29696-w.
  • Kim S-N, Choi BH, Kim HK, Choy YB. Poly (lactic-co-glycolic acid) microparticles in fibrin glue for local, sustained delivery of bupivacaine. J Ind Eng Chem. 2019;75:86–92. doi:10.1016/j.jiec.2019.02.028.
  • Li X, Wei Y, Lv P, Wu Y, Ogino K, Ma G. Preparation of ropivacaine loaded PLGA microspheres as controlled-release system with narrow size distribution and high loading efficiency. Colloids Surf Physicochem Eng Aspects. 2019;562:237–46. doi:10.1016/j.colsurfa.2018.11.014.
  • Han FY, Whittaker A, Howdle SM, Naylor A, Shabir-Ahmed A, Smith MT. Sustained-release hydromorphone microparticles produced by supercritical fluid polymer encapsulation. J Pharm Sci. 2019;108(2):811–4. doi:10.1016/j.xphs.2018.09.021.
  • Rudnik-Jansen I, Schrijver K, Woike N, Tellegen A, Versteeg S, Emans P, et al. Intra-articular injection of triamcinolone acetonide releasing biomaterial microspheres inhibits pain and inflammation in an acute arthritis model. Drug Deliv. 2019;26(1):226–36.
  • Ceschan NE, Bucalá V, Mateos MV, Smyth HDC, Ramírez-Rigo MV. Carrier free indomethacin microparticles for dry powder inhalation. Int J Pharm. 2018;549(1-2):169–78. doi:10.1016/j.ijpharm.2018.07.065.
  • Khattab A, Abouhussein DMN, Mohammad F E. Development of injectable tenoxicam in situ forming microparticles based on sesame oil and poly-DL-lactide: characterization, efficacy and acute toxicity. J Drug Deliv Sci Technol. 2019;51:682–94. doi:10.1016/j.jddst.2019.04.001.
  • Tellegen AR, Rudnik-Jansen I, Beukers M, Miranda-Bedate A, Bach FC, de Jong W, Woike N, Mihov G, Thies JC, Meij BP, et al. Intradiscal delivery of celecoxib-loaded microspheres restores intervertebral disc integrity in a preclinical canine model. J Control Release. 2018;286:439–50. doi:10.1016/j.jconrel.2018.08.019.
  • Qi X, Qin X, Yang R, Qin J, Li W, Luan K, et al. Intra-articular administration of chitosan thermosensitive in situ hydrogels combined with diclofenac sodium–loaded alginate microspheres. J Pharm Sci. 2016;105(1):122–30. doi:10.1016/j.xphs.2015.11.019.
  • Abd-Allah H, Kamel AO, Sammour OA. Injectable long acting chitosan/tripolyphosphate microspheres for the intra-articular delivery of lornoxicam: optimization and in vivo evaluation. Carbohydr Polym. 2016;149:263–73. doi:10.1016/j.carbpol.2016.04.096.
  • Kim SE, Yun Y-P, Shim K-S, Jeon DI, Park K, Kim H-J. In vitro and in vivo anti-inflammatory and tendon-healing effects in Achilles tendinopathy of long-term curcumin delivery using porous microspheres. J Ind Eng Chem. 2018;58:123–30. doi:10.1016/j.jiec.2017.09.016.
  • Ratanavaraporn J, Soontornvipart K, Shuangshoti S, Shuangshoti S, Damrongsakkul S. Localized delivery of curcumin from injectable gelatin/Thai silk fibroin microspheres for anti-inflammatory treatment of osteoarthritis in a rat model. Inflammopharmacol. 2017;25(2):211–21. doi:10.1007/s10787-017-0318-3.
  • Park JW, Yun Y-P, Park K, Lee JY, Kim H-J, Kim SE, Song H-R. Ibuprofen-loaded porous microspheres suppressed the progression of monosodium iodoacetate-induced osteoarthritis in a rat model. Colloids Surf B Biointerfaces. 2016;147:265–73. doi:10.1016/j.colsurfb.2016.07.050.
  • ALQuadeib BT, Eltahir EK, Alagili MF. The oral administration of lidocaine HCl biodegradable microspheres: formulation and optimization. Int J Nanomedicine. 2020;15:857. doi:10.2147/IJN.S236273.
  • Sharma N, Arora S, Madan J. Nefopam hydrochloride loaded microspheres for post-operative pain management: synthesis, physicochemical characterization and in-vivo evaluation. Artif Cells Nanomed Biotechnol. 2018;46(1):138–46. doi:10.1080/21691401.2017.1301459.
  • Bédouet L, Moine L, Servais E, Beilvert A, Labarre D, Laurent A. Tunable delivery of niflumic acid from resorbable embolization microspheres for uterine fibroid embolization. Int J Pharm. 2016;511(1):253–61. doi:10.1016/j.ijpharm.2016.06.128.
  • Ozdabak‐Sert AB, Sen B, Kok FN. Construction of a sandwich‐type wound dressing with pain‐reliever and pH‐responsive antibiotic delivery system. J Appl Polym Sci. 2019;136(47):48252. doi:10.1002/app.48252.
  • Prosapio V, Reverchon E, De Marco I. Formation of PVP/nimesulide microspheres by supercritical antisolvent coprecipitation. J Supercrit Fluid. 2016;118:19–26. doi:10.1016/j.supflu.2016.07.023.
  • Marin MM, Ignat M, Ghica MV, Albu Kaya M, Dinu Pirvu C, Anuta V, Popa L. Collagen—Lidocaine microcapsules with controlled release for tooth extraction pain. Rev Chim. 2018;69(5):1213–5. doi:10.37358/RC.18.5.6291.
  • Zhang X, Dang M, Zhang W, Lei Y, Zhou W. Sustained delivery of prilocaine and lidocaine using depot microemulsion system: in vitro, ex vivo and in vivo animal studies. Drug Dev Ind Pharm. 2020;46(2):264–71. doi:10.1080/03639045.2020.1716377.
  • Zhang H, Zhao Z, Chen W, Lv M, Cheng J, Sun Z. In vitro and in vivo studies of micro-depots using tailored microemulsion for sustained local anaesthesia. Pharm Dev Technol. 2020;:1–8.
  • Maulvi FA, Pillai LV, Patel KP, Desai AR, Shukla MR, Desai DT, Patel HP, Ranch KM, Shah SA, Shah DO. Lidocaine tripotassium phosphate complex laden microemulsion for prolonged local anaesthesia: In vitro and in vivo studies. Colloids Surf B Biointerfaces. 2020;185:110632. doi:10.1016/j.colsurfb.2019.110632.
  • Khaled SA, Alexander MR, Wildman RD, Wallace MJ, Sharpe S, Yoo J, Roberts CJ. 3D extrusion printing of high drug loading immediate release paracetamol tablets. Int J Pharm. 2018;538(1-2):223–30. doi:10.1016/j.ijpharm.2018.01.024.
  • Shetu AA, Sharmin S, Rony SR, Moni F, Samaddar PR, Sohrab MH. Formulation and pharmacopoeial quality evaluation of ketorolac tromethamine IR tablet and comparison with marketed product. J Appl Pharm Sci. 2019;9(05):082–7.
  • Kim Y, Beck-Broichsitter M, Banga AK. Design and evaluation of a poly (lactide-co-glycolide)-based in situ film-forming system for topical delivery of trolamine salicylate. Pharmaceutics. 2019;11(8):409. doi:10.3390/pharmaceutics11080409.
  • Rahman SAU, Siddique S, Abdul MIM, Lateef D, Dan S, Bose A. Development of novel chitosan based ketorolac implant controlled release formulation for subcutaneous drug delivery. Biomed Res. 2018;29(13):2735–9.
  • Oh D-W, Kang J-H, Lee H-J, Han S-D, Kang M-H, Kwon Y-H, et al. Formulation and in vitro/in vivo evaluation of chitosan-based film forming gel containing ketoprofen. Drug Deliv. 2017;24(1):1056–66. doi:10.1080/10717544.2017.1346001.
  • Di Martino A, Drannikov A, Surgutskaia NS, Ozaltin K, Postnikov PS, Marina TE, et al. Chitosan-collagen based film for controlled delivery of a combination of short life anesthetics. Int J Biol Macromol. 2019;140:1183–93. doi:10.1016/j.ijbiomac.2019.08.228.
  • Burki IK, Khan MK, Khan BA, Uzair B, Braga VA, Jamil QA. Formulation development, characterization, and evaluation of a novel dexibuprofen-capsaicin skin emulgel with improved in vivo anti-inflammatory and analgesic effects. AAPS PharmSciTech. 2020;21(6):1–14. doi:10.1208/s12249-020-01760-7.
  • de Lima EN, de Andrade ARB, Leal LB, de Santana DP. Levobupivacaine thermogel for long-acting analgesia. AAPS PharmSciTech. 2018;19(6):2533–42. doi:10.1208/s12249-018-1083-3.
  • Naik A, Kalia YN, Guy RH. Transdermal drug delivery: overcoming the skin’s barrier function. Pharm Sci Technol Today. 2000;3(9):318–26. doi:10.1016/S1461-5347(00)00295-9.
  • Oliveira LJ, Veiga A, Stofella NC, Cunha AC, Toledo MGT, Andreazza IF, et al. Development and evaluation of orodispersible tablets containing ketoprofen. Curr Drug Del. 2020.
  • Saleem MU, Nasiri MI, Zaman S-u, Khan N, Azeem M. Formulation development and characterization of cellulose/polyacrylic acid–based polymers on the release of celecoxib from extended release tablets. J Polym Res. 2020;27(8):1–7. doi:10.1007/s10965-020-02201-6.
  • ElMeshad AN, Abdel-Haleem KM, Gawad NAA, El-Nabarawi MA, Sheta NM. Core in cup ethylmorphine hydrochloride tablet for dual fast and sustained pain relief: formulation, characterization, and pharmacokinetic study. AAPS PharmSciTech. 2020;21(7):1–11. doi:10.1208/s12249-020-01759-0.
  • Hamed R, Omran H. Development of dual–release pellets of the non-steroidal anti–inflammatory drug celecoxib. J Drug Deliv Sci Technol. 2020;55:101419. doi:10.1016/j.jddst.2019.101419.
  • Schug SA, Ting S. Fentanyl formulations in the management of pain: an update. Drugs. 2017;77(7):747–63. doi:10.1007/s40265-017-0727-z.
  • Stanley TH. The fentanyl story. J Pain. 2014;15(12):1215–26. doi:10.1016/j.jpain.2014.08.010.
  • Fisher A, Watling M, Smith A, Knight A. Pharmacokinetics and relative bioavailability of fentanyl pectin nasal spray 100 - 800 µg in healthy volunteers. Int J Clin Pharmacol Ther. 2010;48(12):860–7. doi:10.5414/cpp48860.
  • Zeppetella G, Davies A, Eijgelshoven I, Jansen JP. A network meta-analysis of the efficacy of opioid analgesics for the management of breakthrough cancer pain episodes. J Pain Symptom Manage. 2014;47(4):772–85.e5. doi:10.1016/j.jpainsymman.2013.05.020.
  • Darwish M, Hamed E, Messina J. Fentanyl buccal tablet for the treatment of breakthrough pain: pharmacokinetics of buccal mucosa delivery and clinical efficacy. Perspect Medicin Chem. 2010;4:11–21. doi:10.4137/pmc.s3928.
  • Moore N, Darwish M, Amores X, Schneid H. A review of the pharmacokinetic profile of transmucosal fentanyl formulations. Curr Med Res Opin. 2012;28(11):1781–90. doi:10.1185/03007995.2012.735227.
  • Scott LJ. Fentanyl iontophoretic transdermal system: a review in acute postoperative pain. Clin Drug Investig. 2016;36(4):321–30. doi:10.1007/s40261-016-0387-x.
  • Rane MM, Bajaj A. Development and optimisation of novel oral formulation of an opioid analgesic using central composite design. Cogent Med. 2017;4(1):1326210. doi:10.1080/2331205X.2017.1326210.
  • Jacques ER, Alexandridis P. Tablet scoring: current practice, fundamentals, and knowledge gaps. Appl Sci. 2019;9(15):3066. doi:10.3390/app9153066.
  • Alexander L, Mannion RO, Weingarten B, Fanelli RJ, Stiles GL. Development and impact of prescription opioid abuse deterrent formulation technologies. Drug Alcohol Depend. 2014;138:1–6. doi:10.1016/j.drugalcdep.2014.02.006.
  • Schneider JP, Matthews M, Jamison RN. Abuse-deterrent and tamper-resistant opioid formulations. CNS Drugs. 2010;24(10):805–10. doi:10.2165/11584260-000000000-00000.
  • Darwish M, Bond M, Ma Y, Tracewell W, Robertson P, Jr., Webster LR. Abuse potential with oral route of administration of a hydrocodone extended-release tablet formulated with abuse-deterrence technology in nondependent, recreational opioid users. Pain Med. 2017;18(1):61–77. doi:10.1093/pm/pnw122.
  • Ong JJ, Awad A, Martorana A, Gaisford S, Stoyanov E, Basit AW, et al. 3D printed opioid medicines with alcohol-resistant and abuse-deterrent properties. Int J Pharm. 2020;579:119169. doi:10.1016/j.ijpharm.2020.119169.
  • Carinci AJ. Abuse-deterrent opioid analgesics: a guide for clinicians. Pain Manag. 2020;10(1):55–62. doi:10.2217/pmt-2019-0052.
  • Hale ME, Moe D, Bond M, Gasior M, Malamut R. Abuse-deterrent formulations of prescription opioid analgesics in the management of chronic noncancer pain. Pain Manag. 2016;6(5):497–508. doi:10.2217/pmt-2015-0005.
  • Meruva S, Donovan MD. Polyethylene oxide (PEO) molecular weight effects on abuse-deterrent properties of matrix tablets. AAPS PharmSciTech. 2020;21(1):1–10. doi:10.1208/s12249-019-1565-y.
  • Nukala PK, Palekar S, Patki M, Patel K. Abuse deterrent immediate release egg-shaped tablet (egglets) using 3D printing technology: quality by design to optimize drug release and extraction. AAPS PharmSciTech. 2019;20(2):80. doi:10.1208/s12249-019-1298-y.
  • Palekar S, Kumar Nukala P, Vartak R, Patel K. Abuse deterrent immediate release film technology (ADRIFT): A novel bilayer film technology for limiting intentional drug abuse. Int J Pharm. 2020; 590:119944. doi:10.1016/j.ijpharm.2020.119944.
  • Arya A, Chandra A, Sharma V, Pathak K. Fast dissolving oral films: an innovative drug delivery system and dosage form. 2010;2(1):576–83.
  • El-Feky GS, Farouk Abdulmaguid R, Zayed GM, Kamel R. Mucosal co-delivery of ketorolac and lidocaine using polymeric wafers for dental application. Drug Deliv. 2018;25(1):35–42. doi:10.1080/10717544.2017.1413445.
  • Li X‐Q, Ye Z‐M, Wang J‐B, Fan C‐R, Pan A‐W, Li C, Zhang R‐B. Mucoadhesive buccal films of tramadol for effective pain management. Rev Bras Anestesiol. 2017;67(3):231–7. doi:10.1016/j.bjan.2016.10.006.
  • Zaman M, Hanif M, Shaheryar ZA. Development of tizanidine HCl-meloxicam loaded mucoadhesive buccal films: in-vitro and in-vivo evaluation. PLoS One. 2018;13(3):e0194410. doi:10.1371/journal.pone.0194410.
  • Zaman M, Hanif M. In vitro and ex vivo assessment of hydrophilic polymer‐and plasticizer‐based thin buccal films designed by using central composite rotatable design for the delivery of meloxicam. Adv Polym Technol. 2018;37(6):1823–36. doi:10.1002/adv.21841.
  • Zaman M, Hanif M, Qaiser AA. Effect of polymer and plasticizer on thin polymeric buccal films of meloxicam designed by using central composite rotatable design. Acta Pol Pharm. 2016;73(5):1351–60.
  • Vinklárková L, Masteiková R, Foltýnová G, Muselík J, Pavloková S, Bernatonienė J, Vetchý D. Film wound dressing with local anesthetic based on insoluble carboxymethycellulose matrix. J Appl Biomed. 2017;15(4):313–20. doi:10.1016/j.jab.2017.08.002.
  • Eleftheriadis GK, Monou PK, Bouropoulos N, Boetker J, Rantanen J, Jacobsen J, et al. Fabrication of ­mucoadhesive buccal films for local administration of ketoprofen and lidocaine hydrochloride by combining fused deposition modeling and inkjet printing. J Pharm Sci. 2020;109(9):2757–66. doi:10.1016/j.xphs.2020.05.022.
  • Mahrous GM, Shazly G, Zidan DE, Abdel Zaher AA, El-Mahdy M. Formulation and evaluation of buccoadhesive films of lidocaine hydrochloride. J Adv Biomed Pharmaceut Sci. 2020;0 (0):0– 9. doi:10.21608/jabps.2020.21927.1066.
  • Alyahya MY. Lidocaine mucoadhesive film fabrication using fused deposition modeling 3D printing [Master’s dissertation]. MS 38677, United States: The University of Mississippi; 2020.
  • Yaşayan G, Karaca G, Akgüner ZP, Bal Öztürk A. Chitosan/collagen composite films as wound dressings encapsulating allantoin and lidocaine hydrochloride. Int J Polymeric Mater Polymeric Biomater. 2021;70(9):623–13. doi:10.1080/00914037.2020.1740993.
  • Wannaphatchaiyong S, Heng PWS, Suksaeree J, Boonme P, Pichayakorn W. Lidocaine loaded gelatin/gelatinized tapioca starch films for buccal delivery and the irritancy evaluation using chick chorioallantoic membrane. Saudi Pharm J. 2019;27(8):1085–95. doi:10.1016/j.jsps.2019.09.005.
  • Goder D, Matsliah L, Giladi S, Reshef-Steinberger L, Zin I, Shaul A, Zilberman M. Mechanical, physical and biological characterization of soy protein films loaded with bupivacaine for wound healing applications. Int J Polymeric Mater Polymeric Biomater. 2021;70(5):345–11. doi:10.1080/00914037.2020.1716226.
  • Adelli GR, Balguri SP, Bhagav P, Raman V, Majumdar S. Diclofenac sodium ion exchange resin complex loaded melt cast films for sustained release ocular delivery. Drug Deliv. 2017;24(1):370–9. doi:10.1080/10717544.2016.1256000.
  • Eleftheriadis GK, Monou PK, Bouropoulos N, Fatouros DG. In vitro evaluation of 2D-printed edible films for the buccal delivery of diclofenac sodium. Materials. 2018;11(5):864. doi:10.3390/ma11050864.
  • Trevisol TC, Scartazzini L, Valério A, Guelli Ulson de Souza SMA, Bierhalz ACK, Valle JAB. Diclofenac release from alginate/carboxymethyl cellulose mono and bilayer films for wound dressing applications. Cellulose. 2020;27(11):6629–42. doi:10.1007/s10570-020-03217-3.
  • Aycan D, Selmi B, Kelel E, Yildirim T, Alemdar N. Conductive polymeric film loaded with ibuprofen as a wound dressing material. Eur Polym J. 2019;121:109308. doi:10.1016/j.eurpolymj.2019.109308.
  • Aycan D, Yayla NA, Aydin YA. Chitosan polyvinyl alcohol blend films for ibuprofen encapsulation: Fabrication, characterization and kinetics. Polym Degradation Stab. 2020;181:109346. doi:10.1016/j.polymdegradstab.2020.109346.
  • Oustadi F, Haghbin NM, Mansouri M, Ketabat F. Preparation, characterization, and drug release study of ibuprofen-loaded poly (vinyl alcohol)/poly (vinyl pyrrolidone) bilayer antibacterial membrane. Int J Polymeric Mater Polymeric Biomater. 2020:1–10.
  • Janssen EM, Schliephacke R, Breitenbach A, Breitkreutz J. Drug-printing by flexographic printing technology—a new manufacturing process for orodispersible films. Int J Pharm. 2013;441(1-2):818–25. doi:10.1016/j.ijpharm.2012.12.023.
  • Perumal V, Govender T, Lutchman D, Mackraj I. Investigating a new approach to film casting for enhanced drug content uniformity in polymeric films. Drug Dev Ind Pharm. 2008;34(10):1036–47. doi:10.1080/03639040801928952.
  • Sharma D, Kaur D, Verma S, Singh D, Singh M, Singh G, et al. Fast dissolving oral films technology: a recent trend for an innovative oral drug delivery system. Int J Drug Deliv. 2015;7(2):60–75.
  • Amin PM, Gangurde A, Alai P. Oral film technology: challenges and future scope for pharmaceutical industry. Int J Pharm Pharm Res. 2015;3(3):184–203.
  • Stewart S, Domínguez-Robles J, McIlorum V, Mancuso E, Lamprou D, Donnelly R, Larrañeta E. Development of a biodegradable subcutaneous implant for prolonged drug delivery using 3D printing. Pharmaceutics. 2020;12(2):105. doi:10.3390/pharmaceutics12020105.
  • Wan D, Zhao M, Zhang J, Luan L. Development and in vitro-in vivo evaluation of a novel sustained-release loxoprofen pellet with double coating layer. Pharmaceutics. 2019;11(6):260. doi:10.3390/pharmaceutics11060260.
  • Svirskis D, Procter G, Sharma M, Bhusal P, Dravid A, MacFater W, Barazanchi A, Bennet L, Chandramouli K, Sreebhavan S, et al. A non-opioid analgesic implant for sustained post-operative intraperitoneal delivery of lidocaine, characterized using an ovine model. Biomaterials. 2020; 263:120409. doi:10.1016/j.biomaterials.2020.120409.
  • Li Y, Shi X. In vitro and in vivo evaluation of lidocaine hydrochloride-loaded injectable poly (lactic-co-glycolic acid) implants. Curr Drug Del. 2018;15(10):1411–6. doi:10.2174/1567201815666180912123137.
  • Wu K, Zhi X-D, Wang Y-S, Yu D-S. Localized delivery of ketoprofen from biodegradable in-situ hydrogel in effective management of pain and inflammation in intervertebral disc disorders. J Biomater Tissue Eng. 2016;6(12):987–91. doi:10.1166/jbt.2016.1530.
  • Batool F, Agossa K, Lizambard M, Petit C, Bugueno IM, Delcourt-Debruyne E, Benkirane-Jessel N, Tenenbaum H, Siepmann J, Siepmann F, et al. In-situ forming implants loaded with chlorhexidine and ibuprofen for periodontal treatment: Proof of concept study in vivo. Int J Pharm. 2019;569:118564. doi:10.1016/j.ijpharm.2019.118564.
  • Sweed NM, Basalious EB, Nour SA. Combined site-specific release retardant mini-matrix tablets (C-SSRRMT) for extended oral delivery of dexketoprofen trometamol: in vitro evaluation and single versus multiple doses pharmacokinetic study in human volunteers. Drug Dev Ind Pharm. 2019;45(11):1777–87. doi:10.1080/03639045.2019.1656737.
  • Yin M, Xiao L, Liu Q, Kwon S‐Y, Zhang Y, Sharma PR, Jin L, Li X, Xu B. 3D printed microheater sensor‐integrated, drug‐encapsulated microneedle patch system for pain management. Adv Healthcare Mater. 2019;8(23):1901170. doi:10.1002/adhm.201901170.
  • Rao R, Nanda S. Sonophoresis: recent advancements and future trends. J Pharm Pharmacol. 2009;61(6):689–705. doi:10.1211/jpp.61.06.0001.
  • Tachibana K, Tachibana S. Use of ultrasound to enhance the local anesthetic effect of topically applied aqueous lidocaine. Anesthesiology. 1993;78(6):1091–6. doi:10.1097/00000542-199306000-00011.
  • Mutoh M, Ueda H, Nakamura Y, Hirayama K, Atobe M, Kobayashi D, et al. Characterization of transdermal solute transport induced by low-frequency ultrasound in the hairless rat skin. J Control Release. 2003;92(1-2):137–46. doi:10.1016/S0168-3659(03)00306-7.
  • Vaidya J, Shende P. Potential of sonophoresis as a skin penetration technique in the treatment of rheumatoid arthritis with transdermal patch. AAPS PharmSciTech. 2020;21(5):180. doi:10.1208/s12249-020-01725-w.
  • Masterson J, Kluge B, Burdette A, Sr GL. Sustained acoustic medicine; sonophoresis for nonsteroidal anti-inflammatory drug delivery in arthritis. Ther Deliv. 2020;11(6):363–72. doi:10.4155/tde-2020-0009.
  • Subongkot T. Combined effect of sonophoresis and a microemulsion on the dermal delivery of celecoxib. Drug Deliv. 2020;27(1):1087–93. doi:10.1080/10717544.2020.1797244.
  • Tian A-p, Yin Y-k, Yu L, Yang B-y, Li N, Li J-y. Low-frequency sonophoresis of chinese medicine formula improves efficacy of malignant pleural effusion treatment. Chin J Integr Med. 2020;26(4):263–9. doi:10.1007/s11655-019-3167-7.
  • Tian A-p, Yin Y-k, Yu L, Yang B-y, Li N, J-y L, et al. Topical delivery of modified da-cheng-qi decoction (加味大承气汤) using low-frequency ultrasound sonophoresis for refractory metastatic malignant bowel obstruction: an open-label single-arm clinical trial. Chin J Integr Med. 2019;26(5):1–6.
  • Ryu YC, Kim DI, Kim SH, Wang H-MD, Hwang BH, Engineering B. Synergistic transdermal delivery of biomacromolecules using sonophoresis after microneedle treatment. Biotechnol Bioproc E. 2018;23(3):286–92. doi:10.1007/s12257-018-0070-6.
  • Park J, Lee H, Lim G-S, Kim N, Kim D, Kim Y-C. Enhanced transdermal drug delivery by sonophoresis and simultaneous application of sonophoresis and iontophoresis. AAPS PharmSciTech. 2019;20(3):1–7. doi:10.1208/s12249-019-1309-z.
  • Baji S, Hegde AR, Kulkarni M, Raut SY, Manikkath J, Reddy MS, Mutalik S. Skin permeation of gemcitabine hydrochloride by passive diffusion, iontophoresis and sonophoresis: in vitro and in vivo evaluations. J Drug Deliv Sci Technol. 2018;47:49–54. doi:10.1016/j.jddst.2018.06.019.
  • Singh P, Maibach HI. Iontophoresis in drug delivery: basic principles and applications. Crit Rev Ther Drug Carrier Syst. 1994;11(2-3):161–213.
  • Prausnitz MR, Mitragotri S, Langer R. Current status and future potential of transdermal drug delivery. Nat Rev Drug Discovery. 2004;3(2):115–24. doi:10.1038/nrd1304.
  • Pikal MJ. The role of electroosmotic flow in transdermal iontophoresis. Adv Drug Deliv Rev. 2001;46(1-3):281–305. doi:10.1016/S0169-409X(00)00138-1.
  • Higuchi WI, Li SK, Ghanem AH, Zhu H, Song Y. Mechanistic aspects of iontophoresis in human epidermal membrane. J Control Release. 1999;62(1-2):13–23. doi:10.1016/S0168-3659(99)00026-7.
  • Sheikh NK, Dua A. Iontophoresis Analgesic Medications. StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing LLC; 2021.
  • Mahajan A, Derian A. Local Anesthetic Toxicity. StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing LLC.; 2021.
  • Arunkumar S, Shivakumar HN, Narasimha Murthy S. Effect of terpenes on transdermal iontophoretic delivery of diclofenac potassium under constant voltage. Pharm Dev Technol. 2018;23(8):806–14. doi:10.1080/10837450.2017.1369110.
  • Kubota K, Miyamoto T, Inoue T, Fukayama H. Alternating current iontophoresis for control of postoperative pain. Anesth Prog. 2018;65(2):106–10. doi:10.2344/anpr-64-04-03.
  • Indulekha S, Arunkumar P, Bahadur D, Srivastava R. Thermoresponsive polymeric gel as an on-demand transdermal drug delivery system for pain management. Mater Sci Eng, C. 2016;62:113–22. doi:10.1016/j.msec.2016.01.021.
  • Polat BE, Hart D, Langer R, Blankschtein D. Ultrasound-mediated transdermal drug delivery: mechanisms, scope, and emerging trends. J Control Release. 2011;152(3):330–48. doi:10.1016/j.jconrel.2011.01.006.
  • Almurisi SH, Doolaanea AA, Akkawi ME, Chatterjee B, Ahmed Saeed Aljapairai K, Islam Sarker MZ. Formulation development of paracetamol instant jelly for pediatric use. Drug Dev Ind Pharm. 2020;46(8):1373–83. doi:10.1080/03639045.2020.1791165.
  • Mei L, Xie Y, Huang Y, Wang B, Chen J, Quan G, et al. Injectable in situ forming gel based on lyotropic liquid crystal for persistent postoperative analgesia. Acta Biomater. 2018;67:99–110. doi:10.1016/j.actbio.2017.11.057.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.