181
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Thermal Adsorption Spectroscopy of Hydrogen Isotopes from CHA-Type Zeolites

ORCID Icon, , &
Pages 359-364 | Received 22 Nov 2022, Accepted 13 Mar 2023, Published online: 16 May 2023

References

  • G. VĂSARU, Tritium Isotope Separation, CRC Press, Boca Raton, Florida (1993).
  • HUNTINGTON STUDY GROUP, S. FRANK et al., “Effect of Deutetrabenazine on Chorea Among Patients with Huntington Disease: A Randomized Clinical Trial,” JAMA, 316, 40 2016; https://doi.org/10.1001/jama.2016.8655.
  • J. ATZRODT et al., “Deuterium- and Tritium-Labelled Compounds: Applications in the Life Sciences,” Angew. Chem. Int. Ed., 57, 1758 (2018); https://doi.org/10.1002/anie.201704146.
  • J. CAI et al., “Quantum Sieving: Feasibility and Challenges for the Separation of Hydrogen Isotopes in Nanoporous Materials,” RSC Adv., 2, 8579 (2012); https://doi.org/10.1039/c2ra01284g.
  • H. OH and M. HIRSCHER, “Quantum Sieving for Separation of Hydrogen Isotopes Using MOFs,” Eur. J. Inorg. Chem., 27, 4278 (2016); https://doi.org/10.1002/ejic.201600253.
  • J. KIM et al., “Hydrogen Isotope Separation in Confined Nanospaces: Carbons, Zeolites, Metal–Organic Frameworks, and Covalent Organic Frameworks,” Adv. Mater., 31, 1805293 (2019); https://doi.org/10.1002/adma.201805293.
  • J. HA et al., “Thermodynamic Separation of Hydrogen Isotopes Using Hofmann-Type Metal−Organic Frameworks with High-Density Open Metal Sites,” ACS Appl. Mater. Interfaces, 14, 30946 (2022); https://doi.org/10.1021/acsami.2c07829.
  • R. XIONG et al., “Thermodynamics, Kinetics and Selectivity of H2 and D2 on Zeolite 5A Below 77 K,” Micropor. Mesopor. Mat., 264, 22 (2018); https://doi.org/10.1016/j.micromeso.2017.12.035.
  • B. RADOLA et al., “Enhanced Quantum Sieving of Hydrogen Isotopes via Molecular Rearrangement of the Adsorbed Phase in Chabazite,” Chem. Commun., 56, 5564 (2020); https://doi.org/10.1039/D0CC02060E.
  • R. XIONG et al., “Hydrogen Isotope Separation in Ag(I) Exchanged ZSM-5 Zeolite Through Strong Chemical Affinity Quantum Sieving,” Micropor. Mesopor. Mat., 313, 110820 (2021); https://doi.org/10.1016/j.micromeso.2020.110820.
  • I. BEZVERKHYY et al., “D2 and H2 Adsorption Capacity and Selectivity in CHA Zeolites: Effect of Si/Al Ratio, Cationic Composition and Temperature,” Micropor. Mesopor. Mat., 302, 110217 (2020); https://doi.org/10.1016/j.micromeso.2020.110217.
  • A. TAGUCHI et al., “Hydrogen Isotope (H2 and D2) Sorption Study of CHA-Type Zeolites,” Fusion Sci. Technol., 76, 314 (2020); 10.1080/15361055.2020.1711853.
  • “Database of Zeolite Structures,” International Zeolite Association: Structure Commission; http://www.izastructure.org/ ( current as of Nov. 1, 2022).
  • J. M. SALAZAR et al., “Adsorption of Hydrogen Isotopes in the Zeolite NaX: Experiments and Simulations,” Int. J. Hydro. Ener., 42, 13099 (2017); https://doi.org/10.1016/j.ijhydene.2017.03.222.
  • I. BEZERKHYY et al., “High Efficiency of Na- and Ca-Exchanged Chabazites in D2/H2 Separation by Quantum Sieving,” ACS Appl. Mater. Interfaces, 14, 52738 (2022); https://doi.org/10.1021/acsami.2c12927.
  • J. Y. KIM et al., “Exploiting Diffusion Barrier and Chemical Affinity of Metal-Organic Frameworks for Efficient Hydrogen Isotope Separation,” J. Am. Chem. Soc., 139, 15135 (2017); https://doi.org/10.1021/jacs.7b07925.
  • A. J. W. PHYSICK et al., “Novel Low Energy Hydrogen-Deuterium Isotope Breakthrough Separation Using a Trapdoor Zeolite,” Chem. Eng. J., 288, 161 (2016); http://doi.org/10.1016/j.cej.2015.11.040.
  • A. V. ANIL KUMAR and S. K. BHATIA, “Quantum Effect Induced Reverse Kinetic Molecular Sieving in Microporous Materials,” Phys. Rev. Lett., 95, 245901 (2005); http://doi.org/10.1103/PhysRevLett.95.245901.
  • A. V. ANIL KUMAR et al., “Quantum Effects on Adsorption and Diffusion of Hydrogen and Deuterium in Microporous Materials,” J. Phys. Chem. B, 110, 16666 (2006); http://doi.org/10.1021/jp063034n.
  • X.-Z. CHU et al., “Adsorption of Hydrogen Isotopes on Micro- and Mesoporous Adsorbents with Orderly Structure,” J. Phys. Chem. B, 110, 22596 (2006); http://doi.org/10.1021/jp064745o.
  • S. XIE et al., “MOF-74-M (M = Mn, Co, Ni, Zn, MnCo, MnNi, and MnZn) for Low-Temperature NH3‑SCR and in Situ DRIFTS Study Reaction Mechanism,” ACS Appl. Mater. Interfaces, 12, 48476 (2020); https://doi.org/10.1021/acsami.0c11035.
  • S. MATTEUCCI et al., “Transport of Gases and Vapors in Glassy and Rubbery Polymers,” Materials Science of Membranes for Gas and Vapor Separation, p. 1, Y. MPOLSKII, I. PINNAU, and B. D. FREEMAN Eds., John Wiley & Sons, Ltd., United Kingdom (2006).
  • J. SILVESTR-ALBERO et al., “High-Resolution N2 Adsorption Isotherms at 77.4 K: Critical Effect of the He Used During Calibration,” J. Phys. Chem. C, 117, 16885 (2013); https://doi.org/10.1021/jp405719a.
  • J. SHANG et al., “Determination of Composition Range for ‘Molecular Trapdoor’ Effect in Chabazite Zeolite,” J. Phys. Chem. C, 117, 12841 (2013); https://doi.org/10.1021/jp4015146.
  • J. SHANG et al., “Discriminative Separation of Gases by a ‘Molecular Trapdoor’ Mechanism in Chabazite Zeolites,” J. Am. Chem. Soc, 134, 19246 (2012); https://doi.org/10.1021/ja309274y.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.