390
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Possibilities of Reprocessing Solid Waste with Tritium from Fusion Using High-Temperature Heating

ORCID Icon, ORCID Icon, , ORCID Icon & ORCID Icon
Pages 311-320 | Received 01 Feb 2023, Accepted 16 Aug 2023, Published online: 23 Oct 2023

References

  • A. AUTRICQUE et al., “Dust Remobilization from Rough Planar Surfaces in Tokamak Steady-State Plasmas,” Nucl. Mater. Energy, 17, 284 (Dec. 2018); http://dx.doi.org/10.1016/j.nme.2018.11.013.
  • R. BEHRISCH and W. ECKSTEIN, “Introduction and Overview,” in “Sputtering by Particle Bombardment,” Topics in Applied Physics, Vol. 110, Springer, Berlin, Heidelberg (2007); http://dx.doi.org/10.1007/978-3-540-44502-9_1.
  • M. RIETH et al., “Behavior of Tungsten Under Irradiation and Plasma Interaction,” J. Nucl. Mater., 519, 334 (June 2019); http://dx.doi.org/10.1016/j.jnucmat.2019.03.035.
  • J. MATOLICH, H. NAHM, and J. MOTEFF, “Swelling in Neutron Irradiated Tungsten and Tungsten-25 Percent Rhenium,” Scr. Metall., 8, 7, 837 (1974); http://dx.doi.org/10.1016/0036-9748(74)90304-4.
  • S. TOKKE et al., “Effect of Pulsed Deuterium Plasma Irradiation on Dual-Phase Tungsten High-Entropy Alloys,” Fusion Eng. Des., 183, 113260 (Oct. 2022); http://dx.doi.org/10.1016/j.fusengdes.2022.113260.
  • N. ASHIKAWA et al., “Determination of Retained Tritium from ILW Dust Particles in JET,” Nucl. Mater. Energy, 22, 100673 (Jan. 2020); http://dx.doi.org/10.1016/j.nme.2019.100673.
  • A. BARON-WIECHEC et al., “First Dust Study in JET with the ITER-Like Wall: Sampling, Analysis and Classification,” Nucl. Fusion, 55, 11, 113033 (2015); http://dx.doi.org/10.1088/0029-5515/55/11/113033.
  • A. BARON-WIECHEC et al., “First Scanning Electron Microscopic Study of Dust Particles and Debris from JET with the ITER-Like Wall,” EUROFUSION WPJET2-PR(14) 12665, EUROfusion Consortium (2014); https://scipub.euro-fusion.org/wp-content/uploads/eurofusion/WPJET2PR14_12665_submitted.pdf.
  • M. RUBELA et al., “Dust Generation in Tokamaks: Overview of Beryllium and Tungsten Dust Characterisation in JET with the ITER-Like Wall,” Fusion Eng. Des., 136, Part A, 579 (Nov. 2018); http://dx.doi.org/10.1016/j.fusengdes.2018.03.027.
  • V. RUDNEV and G. E. TOTTEN, ASM Handbook Volume 4C: Induction Heating and Heat Treatment, ASM International, Materials Park (2014).
  • B. NACKE et al., Theoretical Background and Aspects of Electrotechnologies, Publishing House of ETU, Saint Petersburg (2012).
  • I. V. ANDREYEV, V. PETROVYCH, and L. GEORGYIVNA, “Some Features of Sintering of Tungsten Powders,” Sci. Sintering, 48, 2, 191 (2016); http://dx.doi.org/10.2298/SOS1602191A.
  • G. COSOLI et al., “Electrical Resistivity and Electrical Impedance Measurement in Mortar and Concrete Elements: A Systematic Review,” Appl. Sci., 10, 24, 9152 (2020); http://dx.doi.org/10.3390/app10249152.
  • I. POZNYAK, A. PECHENKOV, and A. SHATUNOV, “Electrical Conductivity Measurement of Oxides Melts,” Proc. Int. Scientific Colloquium Modelling for Material Processing, Riga, Latvia, June 8–9, 2006.
  • J. STOKLASA and L. KARÁSKOVÁ NENADÁLOVÁ, “Recovery of Tungsten—Final Report on IPP.CR Contribution to Industrial Technologies for the Recycling of Radioactive Materials, SAE-3.6.1-T001-D010,” EFDA_D_2NAHYV, EUROFUSION (2021).
  • A. ZEMAN et al., “Behavior of Cold-Worked AISI-304 Steel in Stress-Corrosion Cracking Process: Microstructural Aspects,” Appl. Surf. Sci., 255, 1, 160 (2008); http://dx.doi.org/10.1016/j.apsusc.2008.05.301.