3,792
Views
134
CrossRef citations to date
0
Altmetric
Original Articles

Carbon Nanotube Synthesis via the Catalytic CVD Method: A Review on the Effect of Reaction Parameters

&
Pages 17-37 | Received 14 Jun 2005, Published online: 19 Aug 2006

References

  • Iijima , S. 1991 . Helical microstructures of graphitic carbon . Nature , 354 : 56
  • Su , M. , Zheng , B. and Liu , J. 2000 . A scalable CVD method for the synthesis of single‐walled carbon nanotubes with high catalyst producitivity . Chem. Phys. Lett. , 322 : 321
  • Zeng , X. , Sun , X. , Cheng , G. , Yan , X. and Xu , X. 2002 . Production of multi‐wall carbon nanotubes on a large scale . Physica B , 323 : 330
  • Calvert , P. 1992 . Strength in disunity . Nature , 357 : 365
  • Mintmire , J. W. , Dunlap , B. I. and White , C. T. 1992 . Are fullerene tubules metallic? . Phys. Rev. Lett. , 68 : 631
  • Hamada , N. , Sawada , S. and Oshiyama , A. 1992 . New one‐dimensional conductors: Graphitic microtubules . Phys. Rev. Lett. , 68 : 1579
  • Journet , C. and Bernier , P. 1998 . Production of carbon nanotubes . Appl. Phys. A , 67 : 1
  • Jones , C. W. and Koros , W. J. 1994 . Carbon molecular sieve gas separation membranes‐I. Preparation and characterization based on polyimide precursors . Carbon , 32 : 1419
  • Rao , M. B. and Sircar , S. 1993 . Nanoporous carbon membrane for gas separation . Gas Separation and Purification , 7 : 279
  • Peigney , A. , Coquay , P. , Flahaut , E. , Vandenberghe , R. E. , De Grave , E. and Laurent , C. 2001 . A study of the formation of single‐ and double‐walled carbon nanotubes by a CVD method . J. Phys. Chem. B , 105 ( 40 ) : 9699
  • Harris , J. D. , Raffaelle , R. P. , Gennett , T. , Landi , B. J. and Hepp , A. F. 2005 . Growth of multi‐walled carbon nanotubes by injection CVD using cyclopentadienyliron dicarbonyl dimer and cyclooctatetraene iron tricarbonyl . Materials Science and Engineering B , 116 : 369
  • Hernadi , K. , Thien‐Nga , L. , Ljubovic , E. and Forro , L. 2003 . SWNTs as catalyst and/or support in the catalytic decomposition of hydrocarbons . Chemical Physics Letters , 367 : 475
  • Lisiwski , W. , Keim , E. G. , van den Berg , A. H.J. and Smithers , M. A. 2005 . Structural and chemical evolution of single‐wall carbon nanotubes under atomic and molecular deuterium interaction . Carbon , 43 : 1073
  • Maruyama , S. , Miyauchi , Y. , Edamura , T. , Igarashi , Y. , Chiashi , S. and Murakami , Y. 2003 . Chemical Physics Letters , 375 : 553
  • Li , Q. , Yan , H. , Zhang , J. and Liu , Z. 2004 . Effect of hydrocarbons precursors on the formation of carbon nanotubes in chemical vapor deposition . Carbon , 42 : 829
  • Wong , E. W. , Sheehan , P. E. and Lieber , C. E. 1997 . Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes . Science , 277 : 1971
  • Salvetat , J. P. , Briggs , G. A.D. , Bonard , J. M. , Bacsa , R. R. , Kulik , A. J. , Stockli , T. , Burnham , N. A. and Forro , L. 1999 . Elastic and shear moduli of single‐walled carbon nanotubes . Physical Review Letters , 82 : 944 – 947 .
  • Krishnan , A. , Dujardin , E. , Ebbesen , T. W. , Yianilos , P. N. and Treacy , M. M.J. 1998 . Young's modulus of single‐walled nanotubes . Physical Review B , 58 : 14013 – 14019 .
  • Saito , R. , Dresselhaus , G. and Dresselhous , M. S. 1998 . Physical Properties of Carbon Nanotubes London : Imperial College Press .
  • Yu , M. F. , Files , B. S. , Arepalli , S. and Ruoff , R. S. 2000 . Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties . Phys. Rev. Lett. , 84 : 5552
  • Lu , J. P. 1997 . Elastic properties of carbon nanotubes and nanoropes . Phys. Rev. Lett. , 79 : 1297
  • Iijima , S. and Ichihashi , T. 1993 . Single shell carbon nanotubes of 1 nm diameter . Nature , 363 : 603
  • Okazaki , T. and Shinohara , H. 2003 . Synthesis and characterization of single‐wall carbon nanotubes by hot‐filament assisted chemical vapor deposition . Chem. Phys. Lett. , 376 : 606
  • Baughman , R. H. , Cui , C. , Zakhidov , A. A. , Iqbal , Z. , Barisci , Z. N. , Spinks , G. M. , Wallace , G. G. , Mazzoldi , A. , De Rossi , D. , Rinzler , A. G. , Jaschinski , O. , Roth , S. and Kertesz , Z. 1999 . Carbon nanotube actuators . Science , 284 : 1340
  • Ye , Y. , Ahn , C. , Witham , C. , Fultz , B. , Liu , J. , Rinzler , A. G. , Colbert , D. , Smith , K. A. and Smalley , R. E. 1999 . Hydrogen adsorption and cohesive energy of single‐walled carbon nanotubes . Appl. Phys. Lett. , 74 : 2307
  • Zhu , W. , Kochanski , G. P. , Jin , S. , Seibles , L. , Jacobson , D. , Mc Cormack , M. and White , A. 1995 . Electron field‐emission from ion‐implanted diamond . Appl. Phys. Lett. , 67 ( 8 ) : 1157
  • Zhu , W. , Kochanski , G. P. and Jin , S. 1998 . Low‐field electron emission from undoped nanostructured diamond . Science , 282 : 1471
  • Ke , J. S. , Yu , H. , Jin , R. L. , Peng , J. , Liu , G. Y. , Wang , F. H. and Jiang , Y. N. Proceedings of the Twelfth International Gas Discharge and Their Application Conference . September , Greifswald, Germany. pp. 796
  • Liz‐Marzan , L. M. and Kamat , P. V. 2003 . Nanoscale Materials Dordrecht : Kluwer Academic Publishers .
  • Mukhopadhyay , K. , Koshio , K. , Tanaka , N. and Shinohara , H. 1998 . A simple and novel way to synthesize aligned nanotube bundles at low temperature . Jpn. J. Appl. Phys. , 37 : L1257
  • Maruyama , S. , Kojima , R. , Miyauchi , Y. , Chiashi , S. and Kohno , M. 2002 . Low‐temperature synthesis of high‐purity single‐walled carbon nanotubes from alcohol . Chem. Phys. Lett. , 360 : 229
  • Nagaraju , N. , Fonseca , A. , Konya , Z. and Nagy , J. B. 2002 . Alumina and silica supported metal catalysts for the production of carbon nanotubes . Journal of Molecular Catalysis A: Chemical , 181 : 57
  • Seo , J. W. , Hernadi , K. , Miko , C. and Forro , L. 2004 . Behaviour of transition metals catalysts over laser‐treated vanadium support surfaces in the decomposition of acetylene . Applied Catalysis A: General , 260 : 87
  • Lee , C. J. , Lyu , S. C. , Kim , H.‐W. , Park , J. W. , Jung , H. M. and Park , J. 2002 . Carbon nanotubes produced by tungsten‐based catalyst using vapor phase deposition method . Chemical Physics Letters , 361 : 469
  • Yokomichi , H. , Sakai , F. , Ichihara , M. and Kishimoto , N. 2002 . Carbon nanotubes synthesized by thermal chemical vapor deposition using M(NO3)n · mH2O as catalyst . Physica B , 323 : 311
  • Lee , C. J. , Park , J. and Yu , J. A. 2002 . Catalyst effect on carbon nanotubes synthesized by thermal chemical vapor deposition . Chemical Physics Letters , 360 : 250
  • Qian , W. , Liu , T. , Wei , F. , Wang , Z. and Yu , H. 2003 . Carbon nanotubes containing iron and molybdenum particles as a catalyst for methane decomposition . Carbon , 41 : 846
  • Du , C. and Pan , N. 2005 . CVD growth of carbon nanotubes directly on nickel substrate . Materials Letters. , 59 : 1678 – 1682 .
  • Paillet , M. , Jourdain , V. , Poncharal , P. , Sauvajol , J‐L. , Zahab , A. , Meyer , J. C. , Roth , S. , Cordente , N. , Amiens , C. and Chaudret , B. 2005 . Diamond and Related Materials , 14 : 1426
  • Cho , Y.‐S. , Choi , G.‐S. , Hong , S.‐Y. and Kim , D. 2002 . Carbon nanotube synthesis using a magnetic fluid via thermal chemical vapor deposition . Journal of Crystal Growth , 243 : 224
  • Botti , S. , Ciardi , R. , Terranova , M. L. , Piccirillo , S. , Sessa , V. and Rossi , M. 2002 . Carbon nanotubes and nanowires grown from spherical carbon nano‐particles . Chemical Physics Letters , 355 : 395
  • Vander Wal , R. L. 2000 . Flame synthesis of substrate‐supported metal‐catalysed carbon nanotubes . Chem. Phys. Lett , 324 : 217
  • Ding , D. Y. , Wang , J. N. , Cao , Z. L. , Dai , J. H. and Yu , F. 2003 . Ni‐Ni3P alloy catalyst for carbon nanostructures . Chemical Physics Letters , 371 : 333
  • Sinha , A. K. , Hwang , D. W. and Hwang , L.‐P. 2000 . A novel approach to bulk synthesis of carbon nanotubes filled with metal by a catalytic chemical vapor deposition method . Chem. Phys. Lett. , 332 : 455
  • Couteau , E. , Hernadi , K. , Seo , J. W. , Thien‐Nga , L. , Miko , Cs. , Gaal , R. and Forro , L. 2003 . CVD synthesis of high‐purity multiwalled carbon nanotubes using CaCO3 catalyst support for large‐scale production . Chem. Phys. Lett. , 378 : 9
  • Rohmund , F. , Falk , L. K.L. and Campbell , E. E.B. 2000 . A simple method for the production of large arrays of carbon nanotubes . Chem. Phys. Lett. , 328 : 369
  • Chen , M. , Chen , C.‐M. , Koo , H.‐S. and Chen , C.‐F. 2003 . Catalyzed growth model of carbon nanotubes by microwave plasma chemical vapor deposition using CH4 and CO2 gas mixtures . Diamond and Related Materials , 12 : 1829
  • Klinke , C. , Bonard , J.-M. and Kern , K. 2001 . Comparative study of the catalytic growth of patterned carbon nanotube films . Surface Science , 492 : 195
  • Mukhopadhyay , K. , Koshio , A. , Sugai , T. , Tanaka , N. , Shinohara , H. , Konya , Z. and Nagy , J. B. 1999 . Bulk production of quasi‐aligned carbon nanotube bundles by the catalytic chemical vapor deposition (CCVD) method . Chem. Phys. Lett. , 303 : 117
  • Wang , X. , Hu , Z. , Chen , X. and Chen , Y. 2001 . Preparation of carbon nanotubes and nanoparticles by microwave plasma‐enhanced chemical vapor deposition . Scripta Mater. , 44 : 1567
  • Ning , Y. , Zhang , X. , Wang , Y. , Sun , Y. , Shen , L. , Yang , X. and Van Tendeloo , G. 2002 . Bulk production of multi‐wall carbon nanotube bundles on sol‐gel prepared catalyst . Chem. Phys. Lett. , 366 : 555
  • Kong , J. , Soh , H. T. , Cassell , A. M. , Quate , C. F. and Dai , H. J. 1998 . Synthesis of individual single‐walled carbon nanotubes on patterned silicon wafers . Nature , 395 ( 6705 ) : 878
  • Planeix , J. M. , Coustel , N. , Coq , B. , Brotons , V. , Kumbhar , P. S. , Dutartre , R. , Geneste , P. , Bernier , P. and Ajayan , P. M. 1994 . Application of carbon nanotubes as supports in heterogeneous catalysis . J. Am. Chem. Soc. , 116 : 7935
  • Gao , R. , Tan , C. D. and Baker , R. T.K. 2001 . Ethylene hydroformylation on graphite nanofiber supported rhodium catalysts . Catal. Today , 65 : 19
  • Vieira , R. , Pham‐Huu , C. , Keller , N. and Ledoux , M. J. 2002 . New carbon nanofiber/graphite felt composite for use as a catalyst support for hydrazine catalytic decomposition . Chem. Commun., , : 954
  • Ros , T. G. , Keller , D. E. , van Dillen , A. J. , Geus , J. W. and Koningsberger , D. C. 2002 . Preparation and activity of small rhodium metal particles on fishbone carbon nanofibers . J. Catal. , 211 : 85
  • Suh , D. J. , Park , T.‐J. , Kim , J. H. and Kim , K. L. 1997 . Fast sol‐gel synthetic route to high‐surface‐area alumina aerogels . Chem. Mater. , 9 : 1903
  • Giordano , R. , Serp , P. , Kalck , P. , Kihn , Y. , Schreiber , J. , Marhic , C. and Duvail , J.‐L. 2003 . Preparation of rhodium catalysts supported on carbon nanotubes by a surface mediated organometallic reaction . Eur. J. Inorg. Chem. 2003 , : 610
  • Kong , J. , Cassell , A. and Dai , H. 1998 . Chemical vapor deposition of methane for single‐walled carbon nanotubes . Chem. Phys. Lett. , 292 : 4
  • Rakov , E. G. 2000 . Russ. Chem. Rev. , 69 : 35
  • Thaib , A. , Martin , G. A. , Pinheiro , P. , Schouler , M. C. and Gadelle , P. 1999 . Formation of carbon nanotubes from the carbon monoxide disproportionation reaction over Co/Al2O3 and Co/SiO2 catalysts . Catal. Lett. , 63 : 135
  • Konya , Z. , Nagaraju , N. , Tamasi , A. , Mukhopadhyay , K. M. , Fonseca , A. and Nagy , J. B. 1999 . Electrical properties of Nanomaterials — Science and Technology of Molecular Structures Edited by: Kuzmany , H. , Fink , J. , Mehring , M. and Roth , S. Vol. 486 , 249 American Institute of Physics .
  • Willems , I. , Konya , Z. , Colomer , J.‐F. , Van Tendeloo , G. , Nagaraju , N. , Fonseca , A. and Nagy , J. B. 2000 . Control of the outer diameter of thin carbon nanotubes synthesized by catalytic decomposition of hydrocarbons . Chem. Phys. Lett. , 317 : 71
  • Alvin , S. 1987 . Catalyst Supports and Supported Catalysts Theoretical and Applied Concepts London : Butterworths .
  • Zhu , J. , Yudasaka , M. and Iijima , S. 2003 . A catalytic chemical vapor deposition synthesis of double‐walled carbon nanotubes over metal catalysts supported on a mesoporous material . Chemical Physics Letters , 380 : 496
  • Hernadi , K. , Konya , Z. , Siska , A. , Kiss , J. , Oszko , A. , Nagy , J. B. and Kiricsi , I. 2002 . On the role of catalyst, catalyst support and their interaction in synthesis of carbon nanotubes by CCVD . Materials Chemistry and Physics , 77 : 536
  • Gournis , D. , Karakassides , M. A. , Bakas , T. , Boukos , N. and Petridis , D. 2002 . Catalytic synthesis of carbon nanotubes on clay minerals . Carbon , 40 : 2641
  • Ward , J. W. , Wei , B. Q. and Ajayan , P. M. 2003 . Substrate effects on the growth of carbon nanotubes by thermal decomposition of methane . Chemical Physics Letters , 376 : 717
  • Higashi , N.‐O. , Ikegana , N.‐O. , Miyake , T. and Suzuki , T. 2005 . Carbon nanotube formation on Ni‐ or Pd‐loaded diamond catalysts . Diamond and Related Materials , 14 : 820 – 824 .
  • Ortega‐Cervantez , G. , Rueda‐Morales , G. and Ortiz‐Lopez , J. 2005 . Catalytic CVD production of carbon nanotubes using ethanol . Microelectronics Journal , 36 : 495
  • Makris , Th. D. , Giorgi , L. , Giorgi , R. , Lisi , N. and Salernitano , E. 2005 . CNT growth on alumina supported nickel catalyst by thermal CVD . Diamond and Related Materials , 14 : 815 – 819 .
  • Colomer , J.‐F. , Bister , G. , Willems , I. , Konya , Z. , Fonseca , A. , Van Tendeloo , G. and Nagy , J. B. 1999 . Synthesis of single‐wall carbon nanotubes by catalytic decompositions of hydrocarbons . Chem. Commun., , : 1343
  • Flahaut , E. , Govindaraj , A. , Peigney , A. , Laurent , Ch. , Rousset , A. and Rao , C. N.R. 1999 . Synthesis of single‐walled carbon nanotubes using binary (Fe, Co, Ni) alloy nanoparticles prepared in situ by the reduction of oxide solid solutions . Chem. Phys. Lett. , 300 : 236
  • Colomer , J.‐F. , Piedigrosso , P. , Willems , I. , Journet , C. , Bernier , P. , Van Tendeloo , G. , Fonseca , A. and Nagy , J. B. 1998 . J. Chem. Soc. Faraday Trans. , 94 : 3753
  • Lee , C. J. , Park , J. , Han , S. and Ihm , J. 2001 . Growth and field emission of carbon nanotubes on sodalime glass at 550°C using thermal chemical vapor deposition . Chem. Phys. Lett. , 337 : 398
  • Basca , R. R. , Laurent , Ch. , Peigney , A. , Basca , W. S. , Vaugien , Th. and Rousset , A. 2000 . High specific surface area carbon nanotubes from catalytic chemical vapor deposition process . Chem. Phys. Lett. , 323 : 566
  • Colomer , J.‐F. , Stephan , C. , Lefrant , S. , Van Tendeloo , G. , Willems , I. , Konya , Z. , Fonseca , A. , Laurent , Ch. and Nagy , J. B. 2000 . Large‐scale synthesis of single‐wall carbon nanotubes by catalytic chemical vapor deposition (CCVD) method . Chem. Phys. Lett. , 317 : 83
  • Choi , G. S. , Cho , Y. S. , Son , K. H. and Kim , D. J. 2003 . Mass production of carbon nanotubes using spin‐coating of nanoparticles . Microelectronic Engineering , 66 : 77
  • Singh , C. , Shaffer , M. S.P. and Windle , A. H. 2003 . Production of controlled architectures of aligned carbon nanotubes by an injection chemical vapor deposition method . Carbon , 41 : 359
  • Zhu , S. , Su , C.‐H. , Lehoczky , S. L. , Muntele , I. and Ila , D. 2003 . Carbon nanotube growth on carbon fibers . Diamond and Related Materials , 12 : 1825
  • Li , Z. , Chen , J. , Zhang , X. , Li , Y. and Fung , K. K. 2002 . Catalytic synthesized carbon nanostructures from methane using nanocrystalline Ni . Carbon , 40 : 409
  • Gulino , G. , Vieira , R. , Amadou , J. , Nguyen , P. , Ledoux , M. J. , Galvagno , S. , Centi , G. and Pham‐Huu , C. 2005 . C2H6 as an active carbon source for a large scale synthesis of carbon nanotubes by chemical vapour deposition . Applied Catalysis A: General. , 279 : 89 – 97 .
  • Jia , Z. , Wang , Z. , Liang , J. , Wei , B. and Wu , D. 1999 . Production of multi‐walled carbon nanotubes . Carbon , 37 : 903
  • Qiu , J. , An , Y. , Zhao , Z. , Li , Y. and Zhou , Y. 2004 . Catalytic synthesis of single‐walled carbon nanotubes from coal gas by chemical vapor deposition method . Fuel Processing Technology , 85 : 913
  • Pradhan , D. and Sharon , M. 2002 . Carbon nanotubes, nanofilaments and nanobeads by thermal chemical vapor deposition process . Materials Science and Engineering B , 96 : 24
  • Tsang , S. C. , Harris , P. F.J. and Green , M. L.H. 1993 . Thinning and opening of carbon nanotubes by oxidation using carbon dioxide . Nature , 362 ( 8 ) : 520
  • Ajayan , P. M. , Ebbesen , T. W. , Ichihashi , T. , Iijima , S. , Tanigaki , K. and Hiura , H. 1993 . Opening carbon nanotubes with oxygen and implications for filling . Nature , 362 ( 8 ) : 522
  • Chen , Y. K. , Green , M. L.H. , Griffin , J. L. , Hammer , J. , Lago , R. M. and Tsang , S. C. 1996 . Purification and opening of carbon nanotubes via bromination . Adv. Mater. , 8 ( 12 ) : 1012
  • Dillon , A. C. , Genneu , T. , Jones , K. M. , Alleman , J. L. , Parilla , P. A. and Heben , M. J. 1999 . A simple and complete purification of single‐walled carbon nanotube materials . Adv. Mater. , 11 ( 16 ) : 1354
  • Bougrine , A. , Naji , A. , Ghanbaja , J. and Billaud , D. 1999 . Purification and structural characterization of single‐walled carbon nanotubes . Synth. Metals , 103 : 2480
  • Hou , P. X. , Bai , S. , Yang , Q. H. , Liu , C. and Cheng , H. M. 2002 . Multi‐step purification of carbon nanotubes . Carbon , 40 : 81
  • Strong , K. L. , Anderson , D. P. , Lafdi , K. and Kuhn , J. N. 2003 . Purification process for single‐wall carbon nanotubes . Carbon , 41 : 1477
  • Cheng , F. L. , Xing , Y. T. , Tan , P. H. and Su , G. 2000 . Purification of single‐walled carbon nanotubes synthesized by the catalytic decomposition of hydrocarbons . Carbon , 38 : 2041
  • Chattopadhyay , D. , Galeska , I. and Papadimitrakopulos , F. 2002 . Complete elimination of metal catalysts from single wall carbon nanotubes . Carbon , 40 : 985
  • Lambert , J.M. , Ajayan , P. M. , Bernier , P. and Planeix , J. M. 1994 . Improving conditions towards isolating single‐shell carbon nanotubes . Chem. Phys. Lett. , 226 : 364
  • Ebbesen , T. W. 1997 . Carbon Nanotubes: Preparation and Properties 225 Boca Raton, FL : CRC Press .
  • Andrews , R. , Jacques , D. , Qian , D. and Dickey , E. C. 2001 . Purification and structural annealing of multiwalled carbon nanotubes at graphitization temperatures . Carbon , 39 : 1681
  • Chen , X. H. , Chen , C. S. , Chen , Q. , Cheng , F. Q. , Zhang , G. and Chen , Z. Z. 2002 . Non‐destructive purification of multi‐walled carbon nanotubes produced by catalyzed CVD . Materials Letters , 57 : 734
  • Colomer , J. F. , Piedigrosso , P. , Fonseca , A. and Nagy , J. B. 1999 . Different purification methods of carbon nanotubes produced by catalytic synthesis . Synthetic Metals , 103 : 2482
  • Biro , L. P. , Khanh , N. Q. , Vértesy , Z. , Horvath , Z. E. , Osvath , Z. , Koos , A. , Gyulai , J. , Kocsonya , A. , Konya , Z. , Zhang , X. B. , Van Tendeloo , G. , Fonseca , A. and Nagy , J. B. 2002 . Catalyst traces and other impurities in chemically purified carbon nanotubes grown by CVD . Materials Science and Engineering C , 19 : 9
  • Ci , L. , Xie , S. , Tang , D. , Yan , X. , Li , Y. , Liu , Z. , Zou , X. , Zhou , W. and Wang , G. 2001 . Controllable growth of single wall carbon nanotubes by pyrolizing acetylene on the floating iron catalysts . Chemical Physics Letters , 349 : 191
  • Wang , X. , Volodin , A. , Haesendonck , C. V. , Moreau , N. , Fonseca , A. and Nagy , J. B. 2005 . Physica E , 25 : 597 – 604 .
  • Li , W. Z. , Wang , D. Z. , Yang , S. X. , Wen , J. G. and Ren , Z. F. 2001 . Controlled growth of carbon nanotubes on graphite foil by chemical vapor deposition . Chemical Physics Letters , 335 : 141
  • Tang , S. , Zhong , Z. , Xiong , Z. , Sun , L. , Liu , L. , Lin , J. , Shen , Z. X. and Tan , K. L. 2001 . Controlled growth of single‐walled carbon nanotubes by catalytic decomposition of CH4 over Mo/Co/MgO catalysts . Chemical Physics Letters , 350 : 19
  • Kitiyanan , B. , Alvarez , W. E. , Harwell , J. H. and Resasco , D. E. 2000 . Controlled production of single‐wall carbon nanotubes by catalytic decomposition of CO on bimetallic Co–Mo catalysts . Chemical Physics Letters , 317 : 497
  • Kaatz , F. H. , Siegal , M. P. , Overmyer , D. L. , Provencio , P. P. and Jackson , J. L. 2003 . Diameter control and emission properties of carbon nanotubes grown using chemical vapor deposition . Materials Science and Engineering C , 23 : 141
  • Yoon , Y. J. , Bae , J. C. , Baik , H. K. , Cho , S. J. , Lee , S.‐J. , Song , K. M. and Myung , N. S. 2002 . Growth control of single and multi‐walled carbon nanotubes by thin film catalyst . Chemical Physics Letters , 366 : 109
  • Delzeit , L. , Chen , B. , Cassell , A. , Stevens , R. , Nguyen , C. and Meyyappan , M. 2001 . Multilayered metal catalysts for controlling the density of single‐walled carbon nanotube growth . Chemical Physics Letters , 348 : 368
  • Cassell , A. M. , Raymakers , J. A. , Kong , J. and Dai , H. J. 1999 . Large scale CVD synthesis of single‐walled carbon nanotubes . J. Phys. Chem. B , 103 ( 31 ) : 6484
  • Yu , J. , Lucas , J. , Strezov , V. and Wall , T. 2003 . Coal and carbon nanotube production . Fuel , 82 : 2025
  • Yen , J. H. , Leu , I. C. , Lin , M. H. and Hon , M. H. 2004 . Effect of catalyst pretreatment on the growth of carbon nanotubes . Diamond and Related Materials , 13 : 1237
  • Jang , Y.‐T. , Ahn , J.‐H. , Lee , Y.‐H. and Ju , B.‐K. 2003 . Effect of NH3 and thickness of catalyst on growth of carbon nanotubes using thermal chemical vapor deposition . Chemical Physics Letters , 372 : 745
  • Jung , M. , Eun , K. Y. , Baik , Y.‐J. , Lee , K.‐R. , Shin , J.‐K. and Kim , S.‐T. 2001 . Effect of NH3 environmental gas on the growth of aligned carbon nanotube in catalystically pyrolizing C2H2 . Thin Solid Films , 398–399 : 150
  • Juang , Z. Y. , Chien , I. P. , Lai , J. F. , Lai , T. S. and Tsai , C. H. 2004 . The effects of ammonia on the growth of large‐scale patterned aligned carbon nanotubes using thermal chemical vapor deposition method . Diamond and Related Materials , 13 : 1203

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.