367
Views
11
CrossRef citations to date
0
Altmetric
Original Articles

Monodisperse Iron Oxide Nanoparticle-Reduced Graphene Oxide Composites Formed by Self-Assembly in Aqueous Phase

&
Pages 283-289 | Received 09 Nov 2012, Accepted 29 May 2013, Published online: 10 Sep 2014

References

  • Pankhurst, Q. A., Connolly, J., Jones, S. K., and Dobson, J. (2003) Applications of magnetic nanoparticles in biomedicine. J. Phys. D-Appl. Phys., 36: R167–R181.
  • Rangheard, C., de Julian Fernandez, C., Phua, P.-H., Hoorn, J., Lefort, L., and de Vries, J. G. (2010) At the frontier between heterogeneous and homogeneous catalysis: Hydrogenation of olefins and alkynes with soluble iron nanoparticles. Dalton Trans., 39: 8464–8471.
  • Reiss, G. and Hutten, A. (2005) Magnetic nanoparticles: Applications beyond data storage. Nat. Mater., 4: 725–726.
  • Bulte, J. W. M. and Kraitchman, D. L. (2004) Iron oxide MR contrast agents for molecular and cellular imaging. NMR Biomed., 17: 484–499.
  • Koenig, S. H. and Kellar, K. E. (1995) Theory of 1/T1 and 1/T2 NMRD profiles of solutions of magnetic nanoparticles. Magn. Reson. Med., 34: 227–233.
  • Zhan, Y., Meng, F., Lei, Y., Zhao, R., Zhong, J., and Liu, X. (2011) One-pot solvothermal synthesis of sandwich-like graphene nanosheets/Fe3O4 hybrid material and its microwave electromagnetic properties. Mater. Lett., 65: 1737–1740.
  • Azadmanjiri, J., Hojati-Talemi, P., Simon, G. P., Suzuki, K., and Selomulya, C. (2011) Synthesis and electromagnetic interference shielding properties of iron oxide/polypyrrole nanocomposites. Polym. Eng. Sci., 51: 247–253.
  • Bregar, V. B. (2004) Advantages of ferromagnetic nanoparticle composites in microwave absorbers. IEEE Trans. Magn., 40: 1679–1684.
  • Lamba, S. and Annapoorni, S. (2004) Single domain magnetic arrays: Role of disorder and interactions. Eur. Phys. J. B, 39: 19–25.
  • Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., Grigorieva, I. V., and Firsov, A. A. (2004) Electric field effect in atomically thin carbon films. Science, 306: 666–669.
  • Liu, C., Hu, G., and Gao, H. (2012) Preparation of few-layer and single-layer graphene by exfoliation of expandable graphite in supercritical N,N-dimethylformamide. J. Supercrit. Fluids, 63: 99–104.
  • Wang, X., Zhi, L., and Mullen, K. (2007) Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett., 8: 323–327.
  • Park, H. J., Meyer, J., Roth, S., and Skákalová, V. (2010) Growth and properties of few-layer graphene prepared by chemical vapor deposition. Carbon, 48: 1088–1094.
  • Li, D., Muller, M. B., Gilje, S., Kaner, R. B., and Wallace, G. G. (2008) Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol., 3: 101–105.
  • He, F.-A., Fan, J.-T., Song, F., Zhang, L.-M., and Lai-Wa Chan, H. (2011) Fabrication of hybrids based on graphene and metal nanoparticles by in situ and self-assembled methods. Nanoscale, 3: 1182–1188.
  • Xu, Z., Gao, H., and Guoxin, H. (2011) Solution-based synthesis and characterization of a silver nanoparticle–graphene hybrid film. Carbon, 49: 4731–4738.
  • Zhu, X., Zhu, Y., Murali, S., Stoller, M. D., and Ruoff, R. S. (2011) Nanostructured reduced graphene oxide/Fe2O3 composite as a high-performance anode material for lithium ion batteries. ACS Nano, 5: 3333–3338.
  • Zhou, G., Wang, D.-W., Li, F., Zhang, L., Li, N., Wu, Z.-S., Wen, L., Lu, G. Q., and Cheng, H.-M. (2010) Graphene-wrapped Fe3O4 anode material with improved reversible capacity and cyclic stability for lithium ion batteries. Chem. Mat., 22: 5306–5313.
  • Wang, C., Han, X., Xu, P., Zhang, X., Du, Y., Hu, S., Wang, J., and Wang, X. (2011) The electromagnetic property of chemically reduced graphene oxide and its application as microwave absorbing material. Appl. Phys. Lett., 98: 072906.
  • Bronstein, L. M., Huang, X., Retrum, J., Schmucker, A., Pink, M., Stein, B. D., and Dragnea, B. (2007) Influence of iron oleate complex structure on iron oxide nanoparticle formation. Chem. Mat., 19: 3624–3632.
  • Park, J., An, K., Hwang, Y., Park, J.-G., Noh, H.-J., Kim, J.-Y., Park, J.-H., Hwang, N.-M., and Hyeon, T. (2004) Ultra-large-scale syntheses of monodisperse nanocrystals. Nat. Mater., 3: 891–895.
  • Hummers, W. S. and Offeman, R. E. (1958) Preparation of graphitic oxide. J. Am. Chem. Soc., 80: 1339–1339.
  • de Faria, D. L. A., Venâncio Silva, S., and de Oliveira, M. T. (1997) Raman microspectroscopy of some iron oxides and oxyhydroxides. J. Raman Spectrosc., 28: 873–878.
  • Shebanova, O. N. and Lazor, P. (2003) Raman spectroscopic study of magnetite (FeFe2O4): A new assignment for the vibrational spectrum. J. Solid State Chem., 174: 424–430.
  • Jung, C. W. and Jacobs, P. (1995) Physical and chemical properties of superparamagnetic iron oxide MR contrast agents: Ferumoxides, ferumoxtran, ferumoxsil. Magn. Reson. Imaging, 13: 661–674.
  • Park, Y. I., Piao, Y., Lee, N., Yoo, B., Kim, B. H., Choi, S. H., and Hyeon, T. (2011) Transformation of hydrophobic iron oxide nanoparticles to hydrophilic and biocompatible maghemite nanocrystals for use as highly efficient MRI contrast agent. J. Mater. Chem., 21: 11472–11477.
  • Cong, H.-P., He, J.-J., Lu, Y., and Yu, S.-H. (2010) Water-soluble magnetic-functionalized reduced graphene oxide sheets: In situ synthesis and magnetic resonance imaging applications. Small, 6: 169–173.
  • Kusakari, Y., Kanomata, T., Fukushima, K., and Nishihara, H. (2007) Magnetic properties of Heusler alloys Ru2−xFexCrGe. J. Magn. Magn. Mater., 310: e607–e609.
  • Lee, J. W., Viswan, R., Choi, Y. J., Lee, Y., Kim, S. Y., Cho, J., Jo, Y., and Kang, J. K. (2009) Facile fabrication and superparamagnetism of silica-shielded magnetite nanoparticles on carbon nitride nanotubes. Adv. Funct. Mater., 19: 2213–2218.
  • Tromsdorf, U. I., Bigall, N. C., Kaul, M. G., Bruns, O. T., Nikolic, M. S., Mollwitz, B., Sperling, R. A., et al. (2007) Size and surface effects on the MRI relaxivity of manganese ferrite nanoparticle contrast agents. Nano Lett., 7: 2422–2427.
  • Ji, Z., Shen, X., Song, Y., and Zhu, G. (2011) In situ synthesis of graphene/cobalt nanocomposites and their magnetic properties. Mater. Sci. Eng. B, 176: 711–715.
  • Zhan, Y., Meng, F., Yang, X., Zhao, R., and Liu, X. (2011) Solvothermal synthesis and characterization of functionalized graphene sheets (FGSs)/magnetite hybrids. Mater. Sci. Eng. B, 176: 1333–1339.
  • Liu, X. G., Geng, D. Y., Meng, H., Shang, P. J., and Zhang, Z. D. (2008) Microwave-absorption properties of ZnO-coated iron nanocapsules. Appl. Phys. Lett., 92: 173117.
  • Zhang, Q., Li, C., Chen, Y., Han, Z., Wang, H., Wang, Z., Geng, D., Liu, W., and Zhang, Z. (2010) Effect of metal grain size on multiple microwave resonances of Fe/TiO2 metal-semiconductor composite. Appl. Phys. Lett., 97: 133115.
  • Zhang, X. F., Dong, X. L., Huang, H., Lv, B., Lei, J. P., and Choi, C. J. (2007) Microstructure and microwave absorption properties of carbon-coated iron nanocapsules. J. Phys. D-Appl. Phys., 40: 5383–5387.
  • Zhang, X. F., Dong, X. L., Huang, H., Liu, Y. Y., Wang, W. N., Zhu, X. G., Lv, B., Lei, J. P., and Lee, C. G. (2006) Microwave absorption properties of the carbon-coated nickel nanocapsules. Appl. Phys. Lett., 89: 5383–5387.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.