142
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

One-pot and Three-component Functionalization of Short Multi-walled Carbon Nanotubes with Isatoic Anhydride and Benzyl Amine and Their Effect on the MKN-45 and MCF7 Cancer Cells

&
Pages 500-508 | Received 30 Jul 2013, Accepted 14 Nov 2013, Published online: 11 Sep 2014

References

  • Iijima, S. (1991) Helical microtubules of graphitic carbon. Nature, 354: 56–58.
  • Kam, N. W. S., Liu, Z., and Dai, H. (2005) Functionalization of carbon nanotubes via cleavable disulfide bonds for efficient intracellular delivery of siRNA and potent gene silencing. J. Am. Chem. Soc., 127: 12492–12493.
  • Lu, F. S., Gu, L. R., Meziani, M. J., Wang, X., Luo, P. G., Veca, L. M., Cao, L., and Sun, Y. P. (2009) Advances in bioapplications of carbon nanotubes. Adv. Mater., 21: 139–152.
  • Kateb, B., Handel, M. V., Zhang, L. Y., Bronikowski, M. J., Manohara, H., and Badiea, B. (2007) Internalization of MWCNTs by microglia: possible application in immunotherapy of brain tumors. NeuroImage., 37: S9–S17.
  • Reich, S., Thomsen, C., and Maultzsch J. (2010) Carbon Nanotubes, Wiley–VCH: Berlin.
  • Pastorin, G., Wu, W., Wieckowski, S., Briand, J. P., Kostarelos, K., Prato, M., and Bianco, A. (2006) Double functionalisation of carbon nanotubes for multimodal drug delivery. Chem. Commun., 11: 1182–1184.
  • Pantarotto, D., Singh, R., McCarthy, D., Erhardt, M., Briand, J. P., Prato, M., et al. (2004) Functionalized carbon nanotubes for plasmid DNA gene delivery. Angew Chem. Int. Ed., 43: 5242–5246.
  • Gong, H., Kim, S. T., Lee, J. D., and Yim, S. (2013) Simple quantification of surface carboxylic acids on chemically oxidized multi-walled carbon nanotubes. Appl. Surf. Sci., 266: 219–224
  • Tahermansouri, H., and Biazar, E. (2013) Functionalization of carboxylated multi-wall carbon nanotubes with 3,5-diphenyl pyrazole and an investigation of their toxicity. New Carbon Mater., 28: 199–207.
  • Yang, Y., Qiu, S., Xie, X., Wang, X., Kwok, R., and Li, Y. (2010) A facile, green, and tunable method to functionalize carbon nanotubes with water soluble azo initiators by one-step free radical addition. Appl. Surf. Sci., 256: 3286–3292.
  • Heidari, A., Beheshty, M. H., and Rahimi, H. (2013) Functionalization of multi-walled carbon nanotubes via direct friedel-crafts acylation in an optimized PPA/P2O5 medium. Fullerenes Nanotubes Carbon Nanostruct., 21: 516–524.
  • Tahermansouri, H., Azadfar, M., and Heidari, S. (2013) Functionalization and toxicity effect of multi-walled carbon nanotubes with urea derivatives via microwave irradiation. Fullerenes Nanotubes Carbon Nanostruct., 21: 568–578.
  • Tahermansouri, H., Aryanfar, Y., and Biazar, E. (2013) Synthesis, characterization, and the influence of functionalized multi-walled carbon nanotubes with creatinine and 2-aminobenzophenone on the gastric cancer cells. Bull Korean Chem. Soc., 34: 149–153.
  • Tahermansouri, H., and Ghobadinejad, H. (2013) Functionalization of short multi-walled carbon nanotubes with creatinine and aromatic aldehydes via microwave and thermal methods and their influence on the MKN45 and MCF7 cancer cells. Comptes Rendus Chimie., 16: 838–844.
  • Azizian, J., Tahermansouri, H., Chobfrosh khoei, D., Yadollahzadeh, K., and Delbari, A. S. (2012) Microwave-induced chemical functionalization of carboxylated multi-wallnanotubeswith 2,3-diamino pyridine. Fullerenes Nanotubes Carbon Nanostruct., 20: 183–190.
  • Azizian, J., Chobfrosh Khoei, D., Tahermansouri, H., and Yadollahzadeh, K. (2011) Functionalization of carboxylated multi-walled carbon nanotubes with 1,4 phenylendiamine, phenylisocyanate and phenylisothiocyanate. Fullerenes Nanotubes Carbon Nanostruct., 19: 753–760.
  • Tahermansouri, H., Atghaee, M., and Azadfar, M., (2011) The chemical functionalization of multi-wall nanotubes with methyl 2-(2-amino-4-oxothiazol-5(4H)-ylidene) acetate and phenylhydrazine. Orient J. Chem., 27: 1325–1329.
  • Moradi, O., Yari, M., Zare, K., Mirza, B., and Najafi, F. (2012) Carbon nanotubes: a review of chemistry principles and reactions. Fullerenes Nanotubes Carbon Nanostruct., 20: 138–151.
  • Aqel, A., Abou El-Nour, K. M. M., Ammar, R. A. A., and Al-Warthan, A. (2012) Carbon nanotubes, science and technology part (I) structure, synthesis and characterization. Arabian J. Chem., 5: 1–23.
  • Cui, D., Tian, F., Ozcan, C., Wang, M., and Gao, H. (2005) Effect of single wall carbon nanotubes on human HEK293 cells. Toxicol. Lett., 155: 73–85.
  • Wörle-Knirsch, J. M., Pulskamp, K., and Krug, H. F. (2006) Oops they did it again! Carbon nanotubes hoax scientists in viability assays. Nano Lett., 6: 1261–1268.
  • Shvedova, A. A., Castranova, V., Kisin, E. R., Schwegler-Berry, D., Murray, A. R., Gandelsman, V. Z., Maynard, A., and Baron, P. (2003) Exposure to carbon nanotube material: assessment of nanotube cytotoxicity using human keratinocyte cells. J. Toxicol. Environment. Health A., 66: 1909–1926.
  • Yale, H. L., and Kalkstein, M. (1967) Substituted 2,3-dihydro-4(1H)-quinazolinones. A new class of inhibitors of cell multiplication. J. Med. Chem., 10: 334–336.
  • Mizutani, T., Nagase, T., Ito, S., Miyamoto, Y., Tanaka, T., Takenaga, N., Tokita, S., and Sato, N. (2008) Development of novel 2-[4-(aminoalkoxy)phenyl]-4(3H)-quinazolinone derivatives as potent and selective histamine H3 receptor inverse agonists. Bioorganic Med. Chem. Lett., 18: 6041–6045.
  • Wagner, R., and Rothe, L. (1969) Synthesis of 2-thioxo-4-oxo-1,2,3,4-tetrahydro quinazolines. Pharmazie., 24: 513–522.
  • Rivero, I. A., Espinoza, K., and Somanathan, R. (2004) Syntheses of quinazoline-2,4-dione alkaloids and analogues from mexican zanthoxylum species. Molecules, 9: 609–616
  • Hiura, H., Ebbesen, T. W., Tanigaki, K., and et al. (1993) Raman studies of carbon nanotubes. Chem. Phys. Lett., 202: 509–512.
  • Zhao, B., Hu, H., and Haddon, R. (2004) Synthesis and properties of a water-soluble single-walled carbon nanotube-poly(m-aminobenzene sulfonic acid) graft copolymer. Adv. Functional Mater., 14: 71.
  • Guldi, D. M., Rahman, G. M. A., Jux, N., Balbinot, D., Tagmatarchis, N., and Prato, M. (2005) Multiwalled carbon nanotubes in donor–acceptor nanohybrids-towards long-lived electron transfer products. Chem. Commun., 2038–2040.
  • Baskaran, D., Mays, J. W., Zhang, X. P., and Bratcher, M. S. (2005) Carbon nanotubes with covalently linked porphyrin antennae: Photoinduced electron transfer. J. Am. Chem. Soc., 127: 6916–6917.
  • Kirikova, M. N., Ivanov, A. S., Savilov, S. V., and Lunin, V. V. (2008) Modification of multiwalled carbon nanotubes by carboxy groups and determination of the degree of functionalization. Russian Chem. Bull., 57: 298–303.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.