167
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Effect of Spark Plasma Sintering Pressure on the Microstructure of Carbon Nanofibers

, &
Pages 513-517 | Received 29 Sep 2013, Accepted 19 Nov 2013, Published online: 11 Sep 2014

References

  • Hirsch, A. (2010). The era of carbon allotropes. Nat. Mater. 9: 868–871.
  • Rud, A. D., Kuskova, N. I., Ivaschuk, L. I., Zelinskaya, G. M., and Biliy, N. M. (2010). Structure state of carbon nanomaterials produced by high-energy electric discharge techniques. Fullerenes, Nanotubes and Carbon Nanostructures 19: 120–126.
  • Brazhkin, V. V., Lyapin, A. G., Solozhenko, V. L., Bugakov, V. I., Dub, S. N., Kurakevych, O. O., Kondrin, M. V., and Gromnitskaya, E. L. (2008). High-temperature transitions of C60 at moderate pressures. Fullerenes, Nanotubes and Carbon Nanostructures 16: 475–485.
  • Bazargan, A., Ying, Yan, Chi Wai, Hui, and Gordon, McKay. (2013). A Review: Synthesis of carbon-based nano and micro materials by high temperature and high pressure. Ind. Eng. Chem. Res. 52: 12689–12702.
  • Kim, Y. A., Muramatsu, H., Hayashi, T., Endo, M., Terrones, M., and Dresselhaus, M. S. (2004). Thermal stability and structural changes of double-walled carbon nanotubes by heat treatment. Chem. Phys. Lett. 398: 87–92.
  • Jung, Seung Il, Sung Ho, Jo, Hee Sung, Moon, Jae Myung, Kim, Dong-Sik, Zang, and Cheol, Jin Lee (2007). improved crystallinity of double-walled carbon nanotubes after a high-temperature thermal annealing and their enhanced field emission properties. J. Phys. Chem C 111: 4175–4179.
  • Météniera, K., Bonnamy, S., Béguin, F., Journet, C., Bernier, P., Lamy de La Chapelle, M., Chauvet, O., and Lefrant, S. (2002). Coalescence of single-walled carbon nanotubes and formation of multi-walled carbon nanotubes under high-temperature treatments. Carbon 40: 1765–1773.
  • Meletov, K. P. (2012). Intertubular interaction in bundled single-walled carbon nanotubes studied by raman scattering at a high pressure and temperature. Fullerenes, Nanotubes and Carbon Nanostructures 20: 419–423.
  • Dilip, K. Singh, Iyer Parameswar, K., and Giri, P. K. (2011). Diameter dependence of oxidative stability in multiwalled carbon nanotubes: Role of defects and effect of vacuum annealing. J. Appl. Phys. 108: 084313.
  • Kim, U. J., Gutiérrez, H. R., Kim, J. P., and Eklund, P. C. (2005). Effect of the tube diameter distribution on the high-temperature structural modification of bundled single-walled carbon nanotubes. J. Phys. Chem. B. 109: 23358–23365.
  • Zhao, J., Zhang, Y., Su, Y., Huang, X., Wei, L., Eric Siu-Wai, Kong, and Zhang, Y. (2012). Structural improvement of CVD multi-walled carbon nanotubes by a rapid annealing process. Diam. Relat. Mater. 25: 24–28.
  • Sarkar, S., Das, P. K., and Bysakh, S. (2011). Effect of heat treatment on morphology and thermal decomposition kinetics of multiwalled carbon nanotubes. Mate. Chem. Phys. 125: 161–167.
  • Munir, Z. A., Anselmi-Tamburini, U., and Ohyanagi, M. (2006). The effect of electric field and pressure on the synthesis and consolidation of materials: A review of the spark plasma sintering method. J. Mater Sci. 41: 763–777.
  • Omori, M. (2000). Sintering, consolidation, reaction and crystal growth by the spark plasma system (SPS). Mater. Sci.Eng.: A 287: 183–188.
  • Chaim, R. (2007). Densification mechanisms in spark plasma sintering of nanocrystalline ceramics. Mater. Sci.Eng.: A 443: 25–32.
  • Hungría, T., Galy, J., and Castro, A. (2009). Spark plasma sintering as a useful technique to the nanostructuration of piezo-ferroelectric materials. Adv. Eng. Mater. 11: 615–631.
  • Sciti, D., Guicciardi, S., and Nygren, M. (2008). Spark plasma sintering and mechanical behaviour of ZrC-based composites. Scr. Mater. 59: 638–641.
  • Kwon, H., Estili, M., Takagi, K., Miyazaki, T., and Kawasaki, A. (2009). Combination of hot extrusion and spark plasma sintering for producing carbon nanotube reinforced aluminum matrix composites. Carbon 47: 570–577.
  • Zhang, Zhao-Hui, Long, Qi, Xiang-Bo, Shen, Fu-Chi, Wang, and Shu-Kui, Lee (2013). Microstructure and mechanical properties of bulk carbon nanotubes compacted by spark plasma sintering. Mater. Sci.Eng.: A 573: 12–17.
  • Zhan, Guo-Dong, Joshua D., Kuntz, Amiya K., Mukherjee, Peixin, Zhu, and Kunihito, Koumoto. (2006). Thermoelectric properties of carbon nanotube/ceramic nanocomposites. Scr. Mater. 54: 77–82.
  • Kim, Kyung Tae, Si Young, Choi, Eun Hye, Shin, Kyong Seok, Moon, Hye Young, Koo, Gil-Geun, Lee, and Gook Hyun, Ha. (2013). The influence of CNTs on the thermoelectric properties of a CNT/Bi2Te3 composite. Carbon 52: 541–549.
  • Wang, X., Padture, N. P., and Tanaka, H. (2004). Contact-damage-resistant ceramic/single-wall carbon nanotubes and ceramic/graphite composites. Nature Mater. 3: 539–544.
  • Zhan, G. -D., Kuntz, J. D., Wan, J, and Mukherjee, A. K. (2003). Single-wall carbon nanotubes as attractive toughening agents in alumina-based nanocomposites. Nature Mater. 2: 38–42.
  • Legorreta Garcia, F., Estournès, C., Peigney, A., Weibel, A., Flahaut, E., and Ch Laurent.(2009). Spark-plasma-sintering of double-walled carbon nanotube Magnesia nanocomposites. Scr. Mater. 60: 741–744.
  • Zhang, Hai-Long, Jing-Feng, Li, Bo-Ping, Zhang, Ke-Fu, Yao, Wei-Shu, Liu, and Heng, Wang. (2007). Electrical and thermal properties of carbon nanotube bulk materials: Experimental studies for the 328–58 K temperature range. Phys. Rev. B. 75: 205407.
  • Zhang, Faming, Jun, Shen, Jianfei, Sun, Yan Qiu, Zhu, Gang, Wang, and McCartney, G. (2005). Conversion of carbon nanotubes to diamond by spark plasma sintering. Carbon 43: 1254–1258.
  • Xiang, Qi, Bao, Qiaoliang, Li, ChangMing, Gan, Ye, Qunliang Song, Pan, Chunxu, and Tang DingYuan. (2008). Spark plasma sintering-fabricated one-dimensional nanoscale “crystalline-amorphous’’ carbon heterojunction. Appl. Phys. Lett. 92: 113113.
  • Qi, Xiang, Xuefeng, Ruan, and Chunxu, Pan. (2007). Graphitization of solid carbon nanofibers at an unexpectedly low temperature. Mater. Lett. 61: 4272–4275.
  • Kim, Un Jeong, Humberto R., Gutiérreza, Awnish K., Gupta, and Peter C., Eklund 2008. Raman scattering study of the thermal conversion of bundled carbon nanotubes into graphitic nanoribbons. Carbon 46: 729–740.
  • Qiaoliang, B., Han, Z., and Chunxu, P. (2006). Electric-field-induced microstructural transformation of carbon nanotubes. Appl. Phys. Lett. 89: 063124.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.