323
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Effect of Reaction Time, Weight Ratio, and Type of Catalyst on the Yield of Single-Wall Carbon Nanotubes Synthesized by Chemical Vapor Deposition of Acetylene

&
Pages 535-541 | Received 03 Nov 2013, Accepted 13 Dec 2013, Published online: 11 Sep 2014

References

  • Dresselhaus, M. S., Dresselhaus, G., and Saito, R. (1995) Physics of carbon nanotubes. Carbon, 33: 883–891.
  • Treacy, M. M. J., Ebbesen, T. W., and Gibson, J. M. (1996) Exceptionally high Young's modulus observed for individual carbon nanotubes. Nature, 381: 678–680.
  • Nakayama, Y., Akita, S., and Shimada, Y. (1995) Thermally activated electrical conduction in carbon nanotubes. Japan. J. Appl. Phys., 34: 10–12.
  • Dillon, A. C., Jones, K. M., Bekkedahl, T. A., Kiang, C. H., Bethune, D. S., and Heben, M. J. (1997) Storage of hydrogen in single walled carbon nanotubes. Nature, 386: 377–379.
  • See, C. H., and Harris, A. T. (2007) A review of carbon nanotube synthesis via fluidized-bed chemical vapor deposition. Ind. Eng. Chem. Res., 46: 997–1012.
  • Maruyama, S., Kojima, R., Miyauchi, Y., Chiashi, S., and Kohno, M. (2002) Low-temperature synthesis of high-purity single-walled carbon nanotubes from alcohol. Chem. Phys. Lett., 360: 229–234.
  • Endo, M., Takeuchi, K., Igarashi, S., Kobori, K., Shiraishi, M., and Kroto, H. W. (1993) The production and structure of pyrolytic carbon nanotubes (PCNTs). J. Phys. Chem. Solids, 54: 1841–1848.
  • Navarro López, P., Rodrı́guez Ramos, I., and Guerrero Ruiz, A. (2003) A study of carbon nanotube formation by C2H2 decomposition on an iron based catalyst using a pulsed method. Carbon, 41: 2509–2517.
  • Nagaraju, N., Fonseca, A., Konya, Z., and Nagy, J. B. (2002) Alumina and silica supported metal catalysts for the production of carbon nanotubes. J. Mol. Catalysis A: Chem., 181: 57–62.
  • Sinha, A. K., Hwang, D. W., and Hwang, L. - P. (2000) A novel approach to bulk synthesis of carbon nanotubes filled with metal by a catalytic chemical vapor deposition method. Chem. Phys. Lett., 332: 455–460.
  • Dundar Tekkaya, E., and Karatepe, N. (2011) Production of carbon nanotubes by iron catalyst. World Acad. Sci., Eng. Technol., 55: 225–231.
  • Maccallini, E., Tsoufis, T., Policicchio, A., La Rosa, S., Caruso, T., Chiarello, G., Colavita, E., Formoso, V., Gournis, D., and Agostino, R. G. (2010) A spectro-microscopic investigation of Fe–Co bimetallic catalysts supported on MgO for the production of thin carbon nanotubes. Carbon, 48: 3434–3445.
  • Moisala, A., Nasibulin, A. G., and Kauppinen, E. I. (2003) The role of metal nanoparticles in the catalytic production of single-walled carbon nanotubes—a review. J. Phys.: Conden. Matter, 15: 3011–3035.
  • Kumar, M., and Ando, Y. (2010) Chemical Vapor Deposition of Carbon Nanotubes: A Review on Growth Mechanism and Mass Production. J. Nanosci. Nanotechnol., 10: 3739–3758.
  • Bethune, D. S., Kiang, C. H., De Vries, M. S., Gorman, G., Savoy, R., Vazquez, J., and Beyers, R. (1993) Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature, 363: 605–607.
  • Seo, J., Hernadi, K., Miko, C., and Forro, L. (2004) Behaviour of transition metals catalysts over laser-treated vanadium support surfaces in the decomposition of acetylene. Appl. Catalysis A: Gen., 260: 87–91.
  • Chen, P., Zhang, H. B., Lin, G. D., Hong, Q., and Tsm, K. R. (1997) Growth of carbon nanotubes by catalystic decomposition of CH4 or CO on a Ni-MgO catalyst. Carbon, 35: 1495–1501.
  • Chen, Y., Ciuparu, D., Lim, S., Haller, G. L., and Pfefferle, L. D. (2006) The effect of the cobalt loading on the growth of single wall carbon nanotubes by CO disproportionation on Co-MCM-41 catalysts. Carbon, 44: 67–78.
  • Zhu, J., Yudasaka, M., and Iijima, S. (2003) A catalytic chemical vapor deposition synthesis of double-walled carbon nanotubes over metal catalysts supported on a mesoporous material. Chem. Phys. Lett., 380: 496–502.
  • Su, M., Zheng, B., and Liu, J. (2000) A scalable CVD method for the synthesis of single-walled carbon nanotubes with high catalyst productivity. Chem Phys Lett., 322: 321–326.
  • Hernadi, K., Kónya, Z., Siska, A., Kiss, J., Oszkó, A., Nagy, J. B., and Kiricsi, I. (2002) On the role of catalyst, catalyst support and their interaction in synthesis of carbon nanotubes by CCVD. Mater. Chem. Phys., 77: 536–541.
  • Ward, J. W., Wei, B. Q., and Ajayan, P. M. (2003) Substrate effects on the growth of carbon nanotubes by thermal decomposition of methane. Chem. Phys. Lett., 376: 717–725.
  • Flahaut, E., Govindaraj, A., Peigney, A., Laurent, C. H., Rousset, A., and Rao, C. N. R. (1999) Synthesis of single-walled carbon nanotubes using binary (Fe, Co, Ni) alloy nanoparticles prepared in situ by the reduction of oxide solid solutions. Chem. Phys. Lett., 300: 236–242.
  • Esconjauregui, S., Whelan, C. M., and Maex, K. (2009) The reasons why metals catalyze the nucleation and growth of carbon nanotubes and other carbon nanomorphologies. Carbon, 47: 659–669.
  • Konya, Z., Vesselenyi, I., Kiss, J., Farkas, A., Oszko, A., and Kiricsi, I. (2004) XPS study of multiwall carbon nanotube synthesis on Ni-, V-, and Ni, V-ZSM-5 catalysts. Appl. Catalysis a-Gen., 260: 55–61.
  • You, Y. J., Qu, M. Z., Zhou, G. M., and Lin, H. Q. (2011) Growth of single and double walled carbon nanotubes over Co/V/MgO catalysts. Materials Research Bulletin, 46: 1987–1990.
  • Park, Y. S., Choi, Y. C., Kim, K. S., Chung, D. - C., Bae, D. J., An, K. H., Lim, S. C., Zhu, X. Y., and Lee, Y. H. (2001) High yield purification of multiwalled carbon nanotubes by selective oxidation during thermal annealing. Carbon, 39: 655–661.
  • Dresselhaus, M. S., Dresselhaus, G., Saito, R., and Jorio, A. (2005) Raman spectroscopy of carbon nanotubes. Phys. Rep., 409: 47–99.
  • Costa, S., Borowiak-Palen, E., Kruszynska, M., Bachmatiuk, A., and Kalenczuk, R. J. (2008) Characterization of carbon nanotubes by Raman spectroscopy. Mater. Sci.-Poland, 26: 433–441.
  • Hernadi, K., Fonseca, A., Piedigrosso, P., Delvaux, M., Nagy, J. B., Bernaerts, D., and Riga, J. (1997) Carbon nanotubes production over Co/silica catalysts. Catalysis Lett., 48: 229–238.
  • Karatepe, N., Mericboyu, A. E., and Kucukbayrak, S. (1998) Preparation of Fly Ash-Ca(OH)2 Sorbents by Pressure Hydration for SO2 Removal. Energy Sources, 20: 945–953.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.