89
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Anharmonicity Study of Semiconductors and Metallic Nanotubes by Inelastic Spectroscopy

, &
Pages 566-571 | Received 12 Jan 2014, Accepted 12 Feb 2014, Published online: 11 Sep 2014

References

  • Ferrari, A. C. (2007) Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun., 143: 47–57.
  • Hone, J., Whitney, M., Piskoti, C., and Zettl, A. (1999) Thermal conductivity of single-walled carbon nanotubes. Phys. Rev. B, 59: R2514.
  • Osman, A. M. and Srivastava, D. (2001) Temperature dependence of the thermal conductivity of single-wall carbon nanotubes. Nanotechnology, 12: 21.
  • Yao, M., Lu, S., Xiao, J., Yao, Z., Jiang, L., Cui, T., and Liu, B. (2013) Probing factors affecting the Raman modes and structural collapse of single-walled carbon nanotubes under pressure. Phys. Status Sol. B, 250: 1370.
  • Hasdeo, E. H., Nugraha, A. R. T., Sato, K., Dresselhaus, M. S., and Saito, R. (2013) Electronic Raman scattering and the Fano resonance in metallic carbon nanotubes. Phys. Rev. B, 88: 115107.
  • Qiu, C., Shen, X., Cao, B., Cong, C., Saito, R., Yu, J., Dresselhaus, M. S., and Yu, T. (2013) Strong magnetophonon resonance induced triple G-mode splitting in graphene on graphite probed by micromagneto Raman spectroscopy. Phys. Rev. B, 88: 165407.
  • Garnero, C. F., Gyawali, P., Lermechin, A., Pegg, I. L., and Philip, J. (2013) Magnetic properties and Raman spectroscopy of Cr-doped bismuth telluride nanotubes. J. Mater. Sci. Res., 2: 68.
  • Levshov, D., Michel, T., Than, T., Paillet, M., Arenal, R., Jourdain, V., Yuzyuk, Y. I., and Sauvajol, J. L. (2013) Comparative Raman study of individual double-walled carbon nanotubes and single-walled carbon nanotubes. J. Nanoelectro. Optoelectro., 8: 9.
  • Hatting, B., Heeg, S., Ataka, K., Heberle, J., Hennrich, F., Kappes, M. M., Krupke, R., and Reich, S. (2013) Fermi energy shift in deposited metallic nanotubes: A Raman scattering study. Phys. Rev. B, 87: 165442.
  • Zhou, Z., Dou, X., Ci, L., Song, L., Liu, D., Gao, Y., Wang, J., Liu, L., Zhou, W., Xie, S., and Wan, D. (2006) Temperature dependence of the Raman spectra of individual carbon nanotubes. J. Phys. Chem. B, 110: 1206–1209.
  • Bandow, S. and Asaka, S. (1998) Effect of the growth temperature on the diameter distribution and chirality of single-wall carbon nanotubes. Phys. Rev. Lett., 81: 4780.
  • López-Lorente, A. I., Simoneta, B. M., and Valcárcel, M. (2013) Qualitative detection and quantitative determination of single-walled carbon nanotubes in mixtures of carbon nanotubes with a portable Raman spectrometer analyst. Analyst., 138: 2378.
  • Dresselhaus, M. S., Dresselhaus, G., Saito, R., and Jorio, A. (2004) Raman spectroscopy of carbon nanotubes. Phys. Rep., 409: 47.
  • Chen, B., Kadowaki, Y., Inoue, S., Ohkohchi, M., Zhao, X., and Ando, Y. (2010) New Raman-peak at 1850 cm(−1) observed in multiwalled carbon nanotubes produced by hydrogen arc discharge. J. Nanosci. Nanotechnol., 6: 4038.
  • Journet, C., Maser, W. K., Bernier, P., Loiseau, A., Lamy de la Chapelle, M., Lefrant, S., Deniard, P., Lee, R., and Fischer, J. E. (1997) Large-scale production of single-walled carbon nanotubes by the electric-arc technique. Nature, 388: 756.
  • Song, H., Ishii, Y., Al-zubaidi, A., Sakaib, T., and Kawasaki, S. (2013) Temperature-dependent water solubility of iodine-doped single-walled carbon nanotubes prepared using an electrochemical method. Phys. Chem. Chem. Phys., 15: 5767.
  • Jorio, A., Souza Filho, A. G., Dresselhaus, G., Dresselhaus, M. S., Swan, A. K., Ünlü, M. S., Goldberg, B. B., Pimenta, M. A., Hafner, J. H., Lieber, C. M., and Saito, R. (2002) G-band resonant Raman study of 62 isolated single-wall carbon nanotubes. Phys. Rev. B, 65: 155412.
  • Ghandour, A. J., Crowe, I. F., Proctor, J. E., Sun, Y. W., Halsall, M. P., Hernandez, I., Sapelkin, A., and Dunstan, D. J. (2013) Pressure coefficients of Raman modes of carbon nanotubes resolved by chirality: Environmental effect on graphene sheet. Phys. Rev. B, 87: 085416.
  • Costa, S., Borowiak-Palen, E., Kruszyñska, M., Bachmatiuk, A., and Kalen’czu, R. J. (2008) Characterization of carbon nanotubes by Raman spectroscopy. Mater. Sci. Poland, 26: 433.
  • Bonaccorso, F., Tan, P.-H., and Ferrari, A. C. (2013) Multiwall nanotubes, multilayers, and hybrid nanostructures: New frontiers for technology and Raman spectroscopy. ACS Nano, 7: 1838.
  • Charlier, J. C. (2002) Defects in carbon nanotubes. Acc. Chem. Res., 35: 1063.
  • Bokobza, L. (2012) Multiwall carbon nanotube-filled natural rubber: Electrical and mechanical properties. Expresse Pol. Lett., 6: 213.
  • Herrera, J., Balzano, L., Pompeo, F., and Resasco, D. E. (2003) Raman characterization of single-walled nanotubes of various diameters obtained by catalytic disproportionation of CO. J. Nanosci. Nanotech., 3: 1.
  • Song, L., Ma, W., Ren, Y., Zhou, W., Xie, S., Tan, P., and Sun, L. (2008) Temperature dependence of Raman spectra in single-walled carbon nanotube rings. Appl. Phys. Lett., 92: 121905.
  • Judek, J., Jastrzebski, C., Malolepszy, A., Mazurkiewicz, M., Stobinski, L., and Zdrojek, M. (2012) Laser induced temperature effects in multi-walled carbon nanotubes probed by Raman spectroscopy. Phys. Status Sol. A, 209: 313.
  • Sendova, M., Flahaut, E., and Hartsfield, T. (2010) Temperature dependence of Raman scattering in filled double-walled carbon nanotubes. J. App. Phys., 108: 044309.
  • Rao, R., Pierce, N., Liptak, D., Hooper, D., Sargent, G., Semiatin, S. L., Curtarolo, S., Harutyunyan, A. R., and Maruyama, B. (2013) Revealing the impact of catalyst phase transition on carbon nanotube growth by in situ Raman spectroscopy. ACS Nano, 7: 1100.
  • Li, H. D., Yue, K. T., Lian, Z. L., Zhan, Y., Zhou, L. X., Zhang, S. L., Shi, Z. J., Gu, Z. N., Liu, B. B., Yang, R. S., Yang, H. B., Zou, G. T., Zhang, Y., and Iijima, S. (2000) Controllable method for fabricating single-wall carbon nanotube tips. App. Phys. Lett., 76: 2053.
  • Joya, M. R., Zanatta, R., and Barba-Ortega, J. (2013) Raman spectroscopy of temperature induced effects in four carbon allotropes. Mod. Phys. Lett. B, 27: 1350203.
  • Calizo, I., Balandin, A. W., Bao, A., Miao, F., and Lau, C. N. (2007) Temperature dependence of the Raman spectra of graphene and graphene multilayers. Nano Lett., 7: 2645.
  • Pimenta, M. A., Dresselhaus, G., Dresselhaus, M. S., Cancado, L. G., Jorio, A., and Saito, R. (2007) Studying disorder in graphite-based systems by Raman spectroscopy. Phys. Chem. Chem. Phys., 9: 1276.
  • Joya, M. R., Barba-Ortega, J., and Pizani, P. S. (2013) High-temperature, high-pressure Raman spectra and their intrinsic anharmonic effects in the perovskite Pb1−xLaxTiO3. J. App. Phys., 113: 013512.
  • Jiang, J.-W., Wang, J.-S., and Li, B. (2009) Thermal expansion in single-walled carbon nanotubes and graphene: Nonequilibrium Green's function approach. Phys. Rev. B., 80: 205429.
  • Zhang, J., Ji, L., and Zuo, J. (2008) Large Negative Thermal Expansion of an Individual Carbon Nanotube, abstracts APS March Meeting, March 10–14, 2008; Bulletin of the American Physical Society, New Orleans, Louisiana.
  • Suruchi, A., Prabhat, V., Jain, K. P., and Abbi, S. C. (1996) Temperature dependence of optical phonon lifetimes in ZnSe. Phys. B, 226: 331.
  • Chatzakis, I., Yan, H., Song, D., Berciaud, S., and Heinz, T. F. (2011) Temperature dependence of the anharmonic decay of optical phonons in carbon nanotubes and graphite. Phys. Rev. B, 83: 205411.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.