90
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

Synthesis of Silver Nanoparticles by the Action of Heavy Ozonized C60 Fullerene on Silver Nitrate Solutions

Pages 523-529 | Received 11 Mar 2014, Accepted 25 Mar 2014, Published online: 11 Sep 2014

References

  • Roy, N., Gaur, A., Jain, A., Bhattacharya, S., and Rani, V. (2013). Green synthesis of silver nanoparticles: An approach to overcome toxicity. Environ. Toxicol. Pharmacol. 36: 807–812.
  • Ravindran, A., Chandran, P., and Khan, S. S. (2013). Biofunctionalized silver nanoparticles: Advances and prospects. Colloids Surf. B: Biointerfaces 105: 342–352.
  • Nath, D., and Banerjee, P. (2013). Green nanotechnology—A new hope for medical biology. Environ. Toxicol. Pharmacol. 36: 997–1014.
  • Moritz, M., and Geszke-Moritz, M. (2013). The newest achievements in synthesis, immobilization and practical applications of antibacterial nanoparticles. Chem. Eng. J. 228: 596–613.
  • Mittal, K. A., Chisti, Y., and Banerjee, U. C. (2013). Synthesis of metallic nanoparticles using plant extracts. Biotechnol. Adv. 31: 346–356.
  • Sun, Y. (2013). Controlled synthesis of colloidal silver nanoparticles in organic solutions: empirical rules for nucleation engineering. Chem. Soc. Rev., 42: 2497–2511
  • Reidy, B., Haase, A. Luch, A., Dawson, K. A., and Lynch, I. (2013). Mechanisms of silver nanoparticle release, transformation and toxicity: a critical review of current knowledge and recommendations for future studies and applications. Materials 6: 2295–2350.
  • Lima, R., Seabra, A. B., and Durán, N. (2012). Silver nanoparticles: a brief review of cytotoxicity and genotoxicity of chemically and biogenically synthesized nanoparticles. J. Appl. Toxicol. 32: 867–879.
  • Dallas, P., Sharma, V. K., and Zboril, R. (2011). Silver polymeric nanocomposites as advanced antimicrobial agents: Classification, synthetic paths, applications, and perspectives. Adv. Colloid Interf. Sci. 166: 119–135.
  • Tolaymat, T. M., El Badawy, A. M., Genaidy, A., Scheckel, K. G., Luxton, T. P., and Suidan, M. (2010). An evidence-based environmental perspective of manufactured silver nanoparticle in syntheses and applications: A systematic review and critical appraisal of peer-reviewed scientific papers. Science Total Environ. 408: 999–1006.
  • Marambio-Jones, C., and Hoek, E. M. V. (2010). A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J. Nanoparticle Res. 12: 1531–1551.
  • Sharma, V. K., Yngard, R. A., and Lin, Y. (2009). Silver nanoparticles: Green synthesis and their antimicrobial activities. Adv. Colloid Interf. Sci. 145: 83–96.
  • Krutyakov, Y. A., Kudrinskiy, A. A., Olenin, A. Y., and Lisichkin, G. V. (2008). Synthesis and properties of silver nanoparticles: advances and prospects. Russ. Chem. Rev. 77: 233–257.
  • Burda, C., Chen, X., Narayan, R., and El Sayed, M. (2005). Chemistry and properties of nanocrystals of different shapes. Chem. Rev. 105: 1025–1102.
  • Tao, A., Sinsermsuksakul, P., and Yang, P. (2007). Tunable plasmonic lattices of silver nanocrystals Nature Nanotechnology 2: 435–440.
  • Lee, K. S., and El-Sayed, M. A. (2006). Gold and silver nanoparticles in sensing and imaging:  sensitivity of plasmon response to size, shape, and metal composition. J. Phys. Chem. B, 110: 19220–19225.
  • Sönnichsen, C., Reinhard, B. M., Liphardt, J., and Alivisatos, A. P., (2005). A molecular ruler based on plasmon coupling of single gold and silver nanoparticles. Nature Biotechnology 23: 741–745.
  • Das, S. K., Khan, M. M. R., Guha, A. K., and Naskar, N. (2013). Bio-inspired fabrication of silver nanoparticles on nanostructured silica: characterization and application as a highly efficient hydrogenation catalyst. Green Chem., 15: 2548–2557.
  • Cataldo, F., Ursini, O., and Angelini, G. (2013). A green synthesis of colloidal silver nanoparticles and their reaction with ozone. Eur. Chem. Bull. 2: 700–705.
  • Levard, C., Hotze, E. M., Lowry, G. V., and Brown, G. E. (2012). Environmental transformations of silver nanoparticles: impact on stability and toxicity. Environ. Sci. Technol., 46: 6900–6914.
  • Xiu, Z. M., Zhang, Q. B., Puppala, H. L., Colvin, V. L., and Alvarez, P. J. J., (2012). Negligible particle-specific antibacterial activity of silver nanoparticles. Nano Lett., 12: 4271–4275.
  • Cataldo, F. (2014). Green synthesis of silver nanoparticles by the action of black or green tea infusions on silver ions. Eur. Chem. Bull. 3: 280–289.
  • Cataldo, F., and Iglesias-Groth, S. (2014). A differential scanning calorimetric (DSC) study on heavy ozonized C60 fullerene. Fullerenes Nanot. Carbon Nanostruct. submitted for publication.
  • Cataldo, F., and Heymann, D. (2000). Study of polymeric products formed by C60 and C70 fullerene ozonation. Polym. Degrad. Stabil. 70: 237–243.
  • Cataldo, F. (2002). P olymeric fullerene oxide (fullerene ozopolymers) produced by prolonged ozonation of C60 and C70 fullerenes. Carbon 40: 1457–1467.
  • Cataldo, F. (2003). Structural analogies and differences between graphite oxide and C60 and C70 polymeric oxides (fullerene ozopolymers). Fullerenes Nanot. Carbon Nanostruct. 11: 1–13.
  • Bulgakov, R. G., Sabirov, D. S., and Dzhemilev, U. M. (2013). Oxidation of fullerenes with ozone. Russian Chem. Bull. 62: 304–324.
  • Voyutsky, S. (1978). Colloid Chemistry, Mir Publishers, Moscow, Chapter 8.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.