107
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Microstructure and Dielectric Properties of SnO2-doped CaCu3Ti4O12 Ceramics

, , , , &
Pages 43-53 | Accepted 21 May 2014, Published online: 26 Feb 2015

References

  • M. A. Subramanian, D. Li, N. Duan, B. A. Reisner, and A. W. Sleight, High dielectric constant in ACu3Ti4O12 and ACu3Ti3FeO12 phases, J. Solid State Chem. 151, 323–325 (2000).
  • A. P. Ramirez, M. A. Subramanian, M. Gardel, G. Blumberg, D. Li, T. Vogt, and S. M. Shapiro, Giant dielectric constant response in a copper-titanate, Solid State Commun. 115, 217–220 (2000).
  • R. Lo Nigro, R. G. Toro, G. Malandrino, M. Bettinelli, A. Speghini, and I. L. Fragala, A Novel Approach to Synthesizing Calcium Copper Titanate Thin Films with Giant Dielectric Constants, Adv. Mater. 16, 891–895 (2004).
  • L. J. Liu, Y. M. Huang, Y. H. Li, D. P. Shi, S. Y. Zheng, S. S. Wu, L. Fang, and C. Z. Hu, Dielectric and non-Ohmic properties of CaCu3Ti4O12 ceramics modified with NiO, SnO2, SiO2, and Al2O3 additives, J. Mater. Sci. 47, 2294–2299 (2012).
  • S. D. Hutagalung, L. Y. Ooi, and Z. A. Ahmad, Improvement in dielectric properties of Zn-doped CaCu3Ti4O12 electroceramics prepared by modified mechanical alloying technique, J. Alloys compd. 476, 477–481 (2009).
  • T. Li, Z. P. Chen, Y. L. Su, L. Su, and J. C. Zhang, Effect of grain size and Cu-rich phase on the electric properties of CaCu3Ti4O12 ceramics, J. Mater. Sci. 44, 6149–6154 (2009).
  • P. Lukenheimer, R. Fichtl, S. G. Ebbinghaus, and A. Loidl, Nonintrinsic origin of the colossal dielectric constants in CaCu3Ti4O12, Phys. Rev. B 70, 172102 (2004).
  • S. Krohns, P. Lukenheimer, S. G. Ebbinghaus, and A. Loidl, Broadband dielectric spectroscopy on single-crystalline and ceramic CaCu3Ti4O12, Appl. Phys. Lett. 91, 022910 (2007).
  • P. R. Bueno, R. Tararan, R. Parra, E. Joanni, M. A. Ramirez, W. C. Ribeiro, E. Longo, and J. A. Varela, A polaronic stacking fault defect model for CaCu3Ti4O12 material: an approach for the origin of the huge dielectric constant and semiconducting coexistent features, J. Phys. D: Appl. Phys. 42, 055404 (2009).
  • D. C. Sinclair, T. B. Adams, F. D. Morrison, and A. R. West, CaCu3Ti4O12: One-step internal barrier layer capacitor, Appl. Phys. Lett. 80, 2153–2155 (2002).
  • T. B. Adams, D. C. Sinclair, and A. R. West, Influence of Processing Conditions on the Electrical Properties of CaCu3Ti4O12 Ceramics, J. Am. Ceram. Soc. 89, 3129–3135 (2006).
  • S. Y. Chung, Lattice distortion and polarization switching in calcium copper titanate, Appl. Phys. Lett. 87, 052901 (2005).
  • C. H. Mu, P. Liu, Y. He, J. P. Zhou, and H. W. Zhang, An effective method to decrease dielectric loss of CaCu3Ti4O12 ceramics, J. Alloys Compd. 471, 137–141 (2009).
  • Y. Y. Yan, L. Jin, L. X. Feng, and G. H. Cao, Decrease of dielectric loss in giant dielectric constant CaCu3Ti4O12 ceramics by adding CaTiO3, Mater. Sci. Eng. B 130, 146–150 (2006).
  • B. Cheng, Y. H. Lin, W. Deng, J. Cai, J. Lan, C.W. Nan, X. Xiao, and J. He, Dielectric and nonlinear electrical behaviors of Ce-doped CaCu3Ti4O12 ceramics, J. Electroceram. 29, 250–253 (2012).
  • Z. P. Chen, R. Z. Xue, T. Li, H. Y. Dai, and Z. X. Zhang, Raman spectrum, crystal structure and superconductivity in Zn/Fe-doped GdBa2Cu3O7−δ Systems, J. Alloys Compd. 553, 53–58 (2013).
  • N. Kolev, R. P. Bontchev, A. J. Jacobson, V. N. Popov, V. G. Hadjiev, A. P. Litvinchuk, and M. N. Iliev, Raman spectroscopy of CaCu3Ti4O12, Phys. Rev. B 66, 132102 (2002).
  • Q. Zheng, and H. Fan, Microstructures and electrical responses of pure and chromium-doped CaCu3Ti4O12 ceramics, J. Mater. Sci. Technol. 28, 920–926 (2012).
  • A. F. L. Almeida, P. B. A. Fechine, J. C. Góes, M. A. Valente, M. A. R. Miranda, and A. S. B. Sombra, Dielectric properties of BaTiO3 (BTO)–CaCu3Ti4O12 (CCTO) composite screen-printed thick films for high dielectric constant devices in the medium frequency (MF) range, Mater. Sci. Eng. B 111, 113–123 (2004).
  • M. S. Park, G. X. Wang, Y. M. Kang, D. Wexler, S. X. Dou, and H. K. Liu, Preparation and Electrochemical Properties of SnO2 Nanowires for Application in Lithium-Ion Batteries, Angew. Chem. Int. Ed. 46, 750–753 (2007).
  • J. J. Romero, P. Leret, F. Rubio-Marcos, A. Quesada, and J. F. Fernández, Evolution of the intergranular phase during sintering of CaCu3Ti4O12 ceramics, J. Eur. Ceram. Soc. 30, 737–742 (2010).
  • T. B. Adams, D. C. Sinclair, and A. R. West, Giant barrier layer capacitance effects in CaCu3Ti4O12 ceramics, Adv. Mater. 14, 1321–1323 (2002).
  • W. Li, S. Y. Qiu, N. Chen, B. F. Liu, and G. P. Du, Enhanced dielectric properties and sinterability of CaCu3Ti4O12 ceramics by Sr2+ doping, Physica B 405, 1193–1196 (2010).
  • L. Singh, U. S. Rai, K. D. Mandal, and A. K. Rai, Effect of processing routes on microstructure, electrical and dielectric behavior of Mg-doped CaCu3Ti4O12 electro-ceramic, Appl. Phys. A 112, 891–900 (2013).
  • D. L. Sun, A. Y. Wu, and S. T. Yin, Structure, properties, and impedance spectroscopy of CaCu3Ti4O12 ceramics prepared by sol–gel process, J. Am. Ceram. Soc. 91, 169–173 (2008).
  • L. Zhang, Y. G. Wu, X. Z. Guo, Z. Y. Wang, and Y. N. Zou, Influence of Zr doping on the dielectric properties of CaCu3Ti4O12 ceramics, J. Mater. Sci.: Mater. Electron. 23, 865–869 (2012).
  • M. Li, A. Feteira, D. C. Sinclair, and A. R. West, Influence of Mn doping on the semiconducting properties of CaCu3Ti4O12 ceramics, Appl. Phys. Lett. 88, 232903 (2006).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.