423
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

Surface Potential of Graphene Oxide Investigated by Kelvin Probe Force Microscopy

, , , &
Pages 777-781 | Received 25 Nov 2014, Accepted 08 Dec 2014, Published online: 18 May 2015

References

  • Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., Grigorieva, I. V., and Firsov, A. A. (2004) Electric field effect in atomically thin carbon films. Science, 306: 666–669.
  • Bao, Q. and Loh, K. P. (2012) Graphene photonics, plasmonics, and broadband optoelectronic devices. ACS Nano., 6: 3677–3694.
  • Zhang, H., Virally, S., Bao, Q., Kian Ping, L., Massar, S., Godbout, N., and Kockaert, P. (2012) Z-scan measurement of the nonlinear refractive index of graphene. Opt. Lett., 37: 1856–1858.
  • Bao, Q., Zhang, H., Wang, B., Ni, Z., Lim, C. H. Y. X., Wang, Y., Tang, D. Y., and Loh, K. P. (2011) Broadband graphene polarizer. Nat Photon., 5: 411–415.
  • Bonaccorso, F., Sun, Z., Hasan, T., and Ferrari, A. C. (2010) Graphene photonics and optoelectronics. Nat Photon., 4: 611–622.
  • Bao, Q., Zhang, H., Ni, Z., Wang, Y., Polavarapu, L., Shen, Z., Xu, Q.-H., Tang, D., and Loh, K. (2011) Monolayer graphene as a saturable absorber in a mode-locked laser. Nano Res., 4: 297–307.
  • Rao, C. N. R., Biswas, K., Subrahmanyam, K. S., and Govindaraj, A. (2009) Graphene, the new nanocarbon. J. Mater. Chem., 19: 2457–2469.
  • Zhang, H., Tang, D. Y., Zhao, L. M., Bao, Q. L., and Loh, K. P. (2009) Large energy mode locking of an erbium-doped fiber laser with atomic layer graphene. Opt. Express, 17: 17630–17635.
  • Balandin, A. A., Ghosh, S., Nika, D. L., and Pokatilov, E. P. (2010) Thermal conduction in suspended graphene layers. Fullerenes, Nanotubes Carbon Nanostruct., 18: 474–486.
  • Mkhoyan, K. A., Contryman, A. W., Silcox, J., Stewart, D. A., Eda, G., Mattevi, C., Miller, S., and Chhowalla, M. (2009) Atomic and electronic structure of graphene-oxide. Nano Lett., 9: 1058–1063.
  • Dreyer, D. R., Park, S., Bielawski, C. W., and Ruoff, R. S. (2010) The chemistry of graphene oxide. Chem. Soc. Revi., 39: 228–240.
  • Jun-Gang, C., Tong-Jiang, P., Hong-Juan, S., and Ruo-Nan, H. (2015) Influence of thermal reduction temperature on the humidity sensitivity of graphene oxide. Fullerenes, Nanotubes Carbon Nanostruct., 23: 418–423.
  • Sun, Y., Wu, Q., and Shi, G. (2011) Graphene based new energy materials. Energy and Environ. Sci., 4: 1113–1132.
  • Pumera, M. (2011) Graphene-based nanomaterials for energy storage. Energy and Environ. Sci., 4: 668–674.
  • Eda, G., Fanchini, G., and Chhowalla, M. (2008) Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat Nano., 3: 270–274.
  • Eda, G., and Chhowalla, M. (2010) Chemically derived graphene oxide: Towards large-area thin-film electronics and optoelectronics. Adv. Mater., 22: 2392–2415.
  • Zhao, J., Pei, S., Ren, W., Gao, L., and Cheng, H.-M. (2010) Efficient preparation of large-area graphene oxide sheets for transparent conductive films. ACS Nano., 4: 5245–5252.
  • Fouda, A. N., Assy, M. K. A., El Enany, G., and Yousf, N. (2015) Enhanced capacitance of thermally reduced hexagonal graphene oxide for high performance supercapacitor. Fullerenes, Nanotubes Carbon Nanostruct., 23: 618–622.
  • Wang, R., Wang, S., Zhang, D., Li, Z., Fang, Y., and Qiu, X. (2010) Control of carrier type and density in exfoliated graphene by interface engineering. ACS Nano., 5: 408–412.
  • Melitz, W., Shen, J., Kummel, A. C., and Lee, S. (2011) Kelvin probe force microscopy and its application. Surf. Sci. Rep., 66: 1–27.
  • Hao, G., Qi, X., Fan, Y., Xue, L., Peng, X., Wei, X., and Zhong, J. (2013) Spiral growth of topological insulator Sb2te3 nanoplates. Appl. Phys. Lett., 102: 013105.
  • Lee, N. J., Yoo, J. W., Choi, Y. J., Kang, C. J., Jeon, D. Y., Kim, D. C., Seo, S., and Chung, H. J. (2009) The interlayer screening effect of graphene sheets investigated by kelvin probe force microscopy. Appl. Phys. Lett., 95: 222107.
  • Castellanos-Gomez, A., Cappelluti, E., Rafael, R., Nicolás, A., Guinea, F., and Rubio-Bollinger, G. (2012) Electric-field screening in atomically thin layers of Mos2: The role of interlayer coupling. Adv. Mater., 25: 899–903.
  • Hao, G., Huang, Z., Liu, Y., Qi, X., Ren, L., Peng, X., Yang, L., Wei, X., and Zhong, J. (2013) Electrostatic properties of few-layer Mos2 films. AIP Adv., 3: 042125.
  • Parvez, K., Li, R., Puniredd, S. R., Hernandez, Y., Hinkel, F., Wang, S., Feng, X., and Mullen, K. (2013) Electrochemically exfoliated graphene as solution-processable, highly conductive electrodes for organic electronics. ACS Nano., 7: 3598–3606.
  • Yan, L., Punckt, C., Aksay, I. A., Mertin, W., and Bacher, G. (2011) Local voltage drop in a single functionalized graphene sheet characterized by kelvin probe force microscopy. Nano Lett., 11: 3543–3549.
  • Hummers, W. S. and Offeman, R. E. (1958) Preparation of graphitic oxide. J. Am. Chem. Soc., 80: 1339–1339.
  • Wang, W. and Li, Z. (2011) Potential barrier of graphene edges. J. Appl. Phys., 109: 114308.
  • Saxena, S., Tyson, T. A., and Negusse, E. (2010) Investigation of the local structure of graphene oxide. J. Phys. Chem. Lett., 1: 3433–3437.
  • Saxena, S., Tyson, T. A., Shukla, S., Negusse, E., Chen, H., and Bai, J. (2011) Investigation of structural and electronic properties of graphene oxide. Appl. Phys. Lett., 99: 013104.
  • Zhu, W., Low, T., Perebeinos, V., Bol, A. A., Zhu, Y., Yan, H., Tersoff, J., and Avouris, P. (2012) Structure and electronic transport in graphene wrinkles. Nano lett., 12: 3431–3436.
  • Xie, Y., Chen, Y., Wei, X. L., and Zhong, J. (2012) Electron transport in folded graphene junctions. Phys. Rev. B, 86: 195426.
  • Guo, Y. and Guo, W. (2013) Electronic and field emission properties of wrinkled graphene. J. Phys. Chem. C., 117: 692–696.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.