271
Views
13
CrossRef citations to date
0
Altmetric
Original Articles

Chemical Thermodynamics Applied to the Diels–Alder Reaction of C60 Fullerene with Polyacenes

, &
Pages 760-768 | Received 06 Dec 2014, Accepted 08 Dec 2014, Published online: 18 May 2015

References

  • (a) Smith, M. B. and March, J. (2001) March's Advanced Organic Chemistry, Taylor & Francis, New York, pp. 1062–1076. (b) Sikes, P. (1998) A Guidebook to Mechanism in Organic Chemistry, 6th ed.; Taylor & Francis: Harlow, pp. 349–351. (c) Carruthers, W. (1990) Cycloaddition Reactions in Organic Synthesis, vol. 8. of “Tetrahedron Organic Chemistry Series”, Taylor & Francis: Oxford. (d) Norman, R. O. C. (1982) Principles of Organic Synthesis, 2nd ed.; Taylor & Francis: London, Chapter 9. (e) Alder, R. W., Baker, R., and Brown J. M. (1976) Mechanism in Organic Chemistry, Taylor & Francis: New York, Chapter 4.
  • (a) Carey, F. A. and Sundberg, R. J. (2002) Advanced Organic Chemistry. Part A: Structure and Mechanism, Taylor & Francis: Berlin, p. 533. (b) Carey, F. A. and Sundberg, R. J. (1985) Advanced Organic Chemistry. Part B: Reactions and Synthesis, 2nd ed.; Taylor & Francis: New York, pp. 307–322.
  • Biermann, D. and Schmidt, W. (1980) Diels–Alder reactivity of polycyclic aromatic hydrocarbons. 1. Acenes and benzologs. J. Am. Chem. Soc., 102: 3163–3173.
  • Ciganek, E. (1967) Diels–Alder additions of dicyanoacetylene to aromatic hydrocarbons. Tetrahedron Lett., 8: 3321–3325.
  • Oku, A., Ohnishi, Y., and Mashio, F. (1972) Diels–Alder reaction of polymethylnaphthalenes with maleic anhydride. J. Org. Chem., 37: 4264–4269.
  • Atherton, J. C. C. and Jones, S. (2003) Diels–Alder reactions of anthracene, 9-substituted anthracenes and 9,10-disubstituted anthracenes. Tetrahedron, 59: 9039–9057.
  • (a) Allinger, N. L., Cava, M. P., De Jongh, D. C., Johnson, C. R., Lebel, N. A., and Stevens, C. L. (1976) Organic Chemistry, 2nd ed., Taylor & Francis: New York, Chapter 11 and 34. (b) Aihara, J. (1975) Resonance energy of polyacenes and related compounds. Bull. Chem. Soc. Japan, 48: 3737–3640.
  • Bendikov, M., Wudl, and Perepichka, D. F. (2004) Tetrathiafulvalenes, oligoacenenes, and their buckminsterfullerene derivatives: The brick and mortar of organic electronics. Chem. Rev., 104: 4891–4945.
  • Krygowski, T. M., Cyranski, M. K., Czarnocki, Z., Hafelinger G., and Katritzky, A. R. (2000) Aromaticity: A theoretical concept of immense practical importance. Tetrahedron, 56: 1783–1796.
  • (a) Bhattacharya, D., Panda, A., Misra, A., and Klein, D. J. (2014) Clar theory extended for polyacenes and beyond. J. Phys. Chem. A, 118: 4325–4338. (b) Krygowski, T. M., Szatylowicz, H., Stasyuk, O. A., Dominikowska, J., and Palusiak, M. (2014) Aromaticity from the viewpoint of molecular geometry: Application to planar systems. Chem. Rev., 114: 6383–6422. (c) Bultinck, P., Ponec, R., and Carbó‐Dorca, R. (2007) Aromaticity in linear polyacenes: Generalized population analysis and molecular quantum similarity approach. J. Comput. Chem., 28: 152–160. (d) Portella, G., Poater, J., Bofill, J. M., Alemany, P., and Sola, M. (2004) Local Aromaticity of [n]Acenes, [n]Phenacenes, and [n]Helicenes (n = 1–9). J. Org. Chem., 70: 2509–2521.
  • (a) Hyun-Jung Kim, H. J., Wang, X., Mab, J., and Cho, J. H. (2011) A density-functional-theory study of biradicals from benzene to hexacene. Chem. Phys. Lett., 516: 141–145. (b) Schleyer, P. V. R., Manoharan, M., Jiao, H., and Stahl, F. (2001) The acenes: Is there a relationship between aromatic stabilization and reactivity? Org. Lett., 3, 3643–3646. (c) Cheng, M. F., and Li, W. K. (2003) A computational study of the Diels–Alder reactions involving acenes: Reactivity and aromaticity. Chem. Phys. Lett., 368: 630–638.
  • Weast, R. C. (Ed.) (1987–1988) CRC Handbook of Chemistry and Physics, 68th ed.; Taylor & Francis: Boca Raton, FL, pp. E83–E89.
  • (a) Sliva, W. (1995) Cycloaddition reactions of fullerenes. Fullerenes Nanot. Carbon Nanostruct., 3: 243–281. (b) Taylor, R. (1999) Lecture Notes on Fullerene Chemistry. A Handbook for Chemists.Taylor & Francis: London. (c) Hirsch, A., and Brettreich, M. (2005) Fullerenes. Chemistry and Reactions. Taylor & Francis: Weinhem. (d)Yurovskaya, M. A., and Trushkov, I. V. (2002) Cycloaddition to buckminsterfullerene C60: Advancements and future prospects. Russian Chem. Bull. Int. Ed., 51: 367–443. (e) Briggs, J. B. and Miller, G. P. (2006) [60]Fullerene-acene chemistry: A review Comptes Rendus Chimie, 9: 916–927. (f) Hudhomme, P. (2006) Diels–Alder cycloaddition as an efficient tool for linking π-donors onto fullerene C60. Comptes Rendus Chimie, 9: 881–891.
  • (a) Komatsu, K., Murata, Y., Miyabo, A., Takeuchi, K., and Wan, T. S. M. (1993) Chemical transformation of C60. Addition of carbenes and cycloaddition of anthracene. Fullerenes Nanot. Carbon Nanostruct., 1: 231–238. (b) Komatsu, K., Murata, Y., Sugita, N., Takeuchi, K., and Wan, T. S. M. (1993) Use of naphthalene as a solvent for selective formation of the 1:1 Diels–Alder adduct of C60 with anthracene. Tetrahedron Lett., 34: 8473–8476. (c) Ishida, T., Tsuda, M., Nogami, T., Kurono, S., and Ohashi, M. (1994) Spectral characterization of anthracene-, cyclopentadiene-, and dichlorocarbene-C60 adducts. Fullerenes Nanot. Carbon Nanostruct., 2: 155–164. (d) Mikami, K., Matsumoto, S., Tonoi, T., Okubo, Y., Suenobu, T., and Fukuzumi, S. (1998) Solid state photochemistry for fullerene functionalization: Solid state photoinduced electron transfer in the Diels–Alder reaction with anthracenes. Tetrahedron Lett., 39: 3733–3736. (e) Langa, F., de la Cruz, P., Espíldora, E., García, J. J., Pérez, M. C., and de la Hoz, A. (2000) Fullerene chemistry under microwave irradiation. Carbon, 38: 1641–1646. (f)Murata, Y., Karo, K., Fujiwara, K., and Komatsu, K. (1999) Solid-state [4 + 2] cycloaddition of fullerene C60 with condensed aromatics using a high-speed vibration milling technique. J. Org. Chem., 64: 3483–3488. (g) Komatsu, K., Murata, Y., Wang, G. W., Tanaka, T., Kato, N., and Fujiwara, K. (1999) Solid-state mechanochemical reaction of fullerene C60 Fullerenes Nanot. Carbon Nanostruct., 7: 609–620. (h) Wang, G. W., Chen, Z. X., Murata, Y., and Komatsu, K. (2005) [60]Fullerene adducts with 9-substituted anthracenes: Mechanochemical preparation and retro Diels–Alder reaction. Tetrahedron, 61: 4851–4856. (i) Duarte-Ruiz, A., Müller, T., Wurst, K., and Kräutler, B. (2001) The bis-adducts of the [5,6]-fullerene C60 and anthracene Tetrahedron, 57: 3709–3714. (j) Duarte-Ruiz, A., Wurst, K., and Kräutler, B. (2001) Regioselective ‘one-pot’ synthesis of antipodal bis-adducts by heating of solid [5,6]fullerene-C60-Ih and anthracenes.Helv. Chim. Acta, 84: 2167–2177. (k) Kräutler, B., Müller, T., and Duarte-Ruiz, A. (2001) Efficient preparation of monoadducts of [60]fullerene and anthracenes by solution chemistry and their thermolytic decomposition in the solid state. Chem. Eur. J., 7: 3223–3235. (l) Jia, W., and Miller, G. P. (2008) Scalable, solution phase synthesis of the trans-1 bisanthracene adduct of [60]fullerene. Fullerenes Nanot. Carbon Nanostruct., 16: 58–65. (m) Simonyan, A., and Gitsov, I. (2008) Linear-dendritic supramolecular complexes as nanoscale reaction vessels for “green” chemistry. Diels–Alder reactions between fullerene C60 and polycyclic aromatic hydrocarbons in aqueous medium. Langmuir, 24: 11431–11441. (n) Duarte-Ruiz, A., Echegoyen, L., Aya, A., and Gómez-Baquero, F. (2009) A new method to prepare an e,e,e trisadduct of C60 using a protection-deprotection sequence J. Mex. Chem. Soc., 53: 169–173. (o) Martin, N. M., Luzan, S. M., and Talyzin, A. V. (2010) High-temperature reactions of C60 with polycyclic aromatic hydrocarbons. Chem. Phys., 368: 49–57. (p) Datta, K., Banerjee, M., Seal, B. K., and Mukherjee, A. K. (2000) Ground state EDA complex formation between [60]fullerene and a series of polynuclear aromatic hydrocarbons J. Chem. Soc. Perkin Trans., 2: 531–534. (q) Bhattacharya, S., Nayak, S. K., Chattopadhyay, S., Banerjee, M., and Mukherjee, A. K. (2001) Study of molecular complex formation between [60]fullerene and two series of donors by the NMR method. J. Phys. Chem. A, 105: 9865–9868. (r) Neti, V. S. P. K., Cerón, M. R., Duarte-Ruiz, A., Balch, A. L., and Echegoyen, L. (2014) High-yield, regiospecific bis-functionalization of C70 using a Diels–Alder reaction in molten anthracene Chem. Comm., 50: 10584–10587. (s) Cao, Y., Liang, Y., Zhang, L., Briseno, A. L., and Houk, K. N. (2014) Why bistetracenes are much less reactive than pentacenes in Diels–Alder reactions with fullerenes? J. Am. Chem. Soc., 136: 10743–10751. (t) Kawakami, H., Okada, H., and Matsuo, Y. (2013) Efficient Diels–Alder addition of cyclopentadiene to lithium ion encapsulated [60]fullerene. Org. Lett., 15: 4466–4469. (u) Garcia-Borràs, M., Luis, J. M., Swart, M., and Solà, M. (2013) Diels–Alder and retro-Diels–Alder cycloadditions of (1,2,3,4,5-pentamethyl) cyclopentadiene to La@C2v-C82: Regioselectivity and product stability Chem. Eur. J., 19: 4468–4479. (v) Schlueter, J. A., Seaman, J. M., Taha, S., Cohen, H., Lykke, K. R., Wang, H. H., and Williams, J. M. (1993) Synthesis, purification, and characterization of the 1 : 1 addition product of C60 and anthracene. J. Chem. Soc. Chem. Commun., (1993): 972–974. (w) Miller, G. P., and Briggs, J, (2004) Probing the spatial requirements for [60]fullerene–[60]fullerene p-stacking and the syn addition of [60]fullerenes across acenes. Tetrahedron Lett., 45: 477–481. (x) Chronakis, N., and Orfanopoulos, M., (2001) Concerted Diels–Alder reaction between anthracene and C60. Tetrahedron Lett., 42: 1201–1204.
  • Cami, J., Bernard-Salas, J., Peeters, E., and Malek, S. E. (2010) Detection of C60 and C70 in a young planetary nebula. Science 329: 1180–1183.
  • García-Hernández, D. A., Iglesias-Groth, S., Acosta-Pulido, J. A., Manchado, A., García-Lario, P., Stanghellini, L., Villaver, E., Shaw, R. A., and Cataldo, F. (2011) The formation of fullerenes: Clues from new C60, C70, and (possible) planar C24 detections in Magellanic cloud planetary nebulae. Astrophys. J. Lett., 737: L30.
  • Gielen, C., Cami, J., Bouwman, J., Peeters, E., and Min., M. (2011) Carbonaceous molecules in the oxygen-rich circumstellar environment of binary post-AGB stars. C60 fullerenes and polycyclic aromatic hydrocarbons. Astronom. Astrophys., 536(2011): A54.
  • Dunk, P. W., Adjizian, J. J., Kaiser, N. K., Quinn, J. P., Blakney, G. T., Ewels, C. P., Marshal, A. G., and Kroto, H. W. (2013) Metallofullerene and fullerene formation from condensing carbon gas under conditions of stellar outflows and implication to stardust. Proc. National Acad. Sci., 110: 18081–18086.
  • (a) Garcia-Hernandez, A., Cataldo, F., and Manchado, A. (2013) Infrared spectroscopy of fullerene C60/anthracene adducts. Monthly Not. Royal Astronom. Soc. 434: 415–422. (b) Cataldo, F., Garcia-Hernandez, A., and Manchado, A. (2014) Sonochemical synthesis of fullerene C60/anthracene Diels–Alder mono and bis-adducts. Fullerenes Nanot. Carbon Nanostruct.,22: 565–574.
  • Cataldo, F., Garcia-Hernandez, A., and Manchado, A. (2014) A study on the synthesis and stability of the C60 fullerene/tetracene adduct. Eur. Chem. Bull., 3: 740–744.
  • (a) Benson, S. W. (1968) Thermochemical Kinetics. Methods for Estimation of Thermochemical Data and Rate Parameters. Taylor & Francis: New York. (b) Cohen, N., and Benson, S. W. (1993) Estimation of heats of formation of organic compounds by additivity methods. Chem. Rev., 93: 2419–2438.
  • Van Krevelen, D. W. (1990) Properties of Polymers: Their Estimation and Correlation with Chemical Structure, 3rd ed.; Taylor & Francis: Amsterdam, 1990, Chapter 20.
  • Cataldo, F. (1997) On the enthalpy of formation of the most known carbon allotropes. Fullerenes, Nanot. Carbon Nanostruct., 5: 1615–1620.
  • Beckhaus, H. D., Rüchardt, C., Kao, M., Diederich, F., and Foote, C. S. (1992) The Stability of Buckminsterfullerene (C60): Experimental determination of the heat of formation. Angew. Chemie Int. Ed. Engl., 31: 63–64.
  • Diogo, H. P., Minas da Piedade, M. E., Dennis, T. J. S., Hare, J. P., Kroto, H. W., Taylor, R., and Walton, D. R. M. (1993) Enthalpies of formation of buckminsterfullerene (C60) and of the parent ions C60+, C602+, C603+ and C60−. J. Chem. Soc. Faraday Trans., 89: 3541–3544.
  • Kiyobayashi, T. and Sakiyama, M. (1993) Combustion calorimetric studies on C60 and C70. Fullerenes, Nanot. Carbon Nanostruct., 1: 269–273.
  • Diky, V. V. and Kabo, G. J. (2000) Thermodynamic properties of C60 and C70 fullerenes. Russ. Chem. Rev., 69: 95–104.
  • Cataldo, F. (2009) On the solubility parameter of C60and higher fullerenes. Fullerenes Nanot. Carbon Nanostruct., 17: 79–84.
  • Cataldo, F., Ursini, O., and Angelini, G. (2013) Biodiesel as a plasticizer of a SBR-based tire tread formulation. ISRN Polymer Science, Article ID 340426, 9 pages.
  • Cataldo, F. (2008) Solubility of fullerenes in fatty acids esters: A new way to deliver in vivo fullerenes. Theoretical calculations and experimental results. In Medicinal Chemistry and Pharmacological Potential of Fullerenes and Carbon Nanotubes (pp. 317–335). Taylor & Francis: Netherlands.
  • (a) Cataldo, F. (2001) The action of ozone on polymers having unconjugated and cross- or linearly conjugated unsaturation: Chemistry and technological aspects. Polymer Degrad. Stabil., 73: 511–520. (b) Cataldo, F. (2013) Chemical and thermochemical aspects of the ozonolysis of ethyl oleate: Decomposition enthalpy of ethyl oleate ozonide. Chem. Phys. Lipids, 175/176: 41–49. (c) Cataldo, F. (2014) Thermochemistry of ozonides decomposition. Eur. Chem. Bull., 3: 227–233. (d) Cataldo, F. (2007) Polyynes formation from electric arc in liquid argon in presence of methane. Fullerenes Nanot. Carbon Nanostruct., 15: 291–301.
  • Sarova, R. J. and Berberian-Santos, M. (2004) Kinetics of the Diels–Alder reaction between C60 and acenes. Chem. Phys. Lett., 397: 402–407.
  • Sarova, R. J. and Berberian-Santos, M. (2004) Erratum to: “Kinetics of the Diels–Alder reaction between C60 and acenes” Chem. Phys. Lett., 400: 271.
  • Wang, G. W., Saunders, M., and Cross, R. J. (2001) Reversible Diels–Alder Addition to Fullerenes: A study of equilibria using3He NMR spectroscopy. J. Am. Chem. Soc., 123: 256–259.
  • Mack, J. and Miller, G. P. (1997) Synthesis and characterization of C60-pentacene monoadduct. Fullerenes Nanot. Carbon Nanostruct., 5: 607–614.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.