221
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

Comparison of the Dielectric Thermal Properties and Dynamic Mechanical Thermal Properties of Natural Rubber-Based Composites Comprising Multiwall Carbon Nanotubes and Graphene Nanoplatelets

, , , , , & show all
Pages 1001-1007 | Received 15 Sep 2014, Accepted 03 Jan 2015, Published online: 04 Sep 2015

References

  • McCarthy, D. W., Mark, J. E., Clarson, S. J., and Schaefer, D. W.. (1998). “Synthesis, structure, and properties of hybrid organic-inorganic composites based on polysiloxanes. II. Comparisons between poly(methylphenylsiloxane) and poly(dimethylsiloxane), and between titania and silica.” Journal of Polymer Science Part B-Polymer Physics 36 (7): 1191–200.
  • McCarthy, D. W., Mark, J. E., and Schaefer, D. W.. (1998). “Synthesis, structure, and properties of hybrid organic-inorganic composites based on polysiloxanes. I. Poly(dimethylsiloxane) elastomers containing silica.” Journal of Polymer Science Part B-Polymer Physics 36 (7): 1167–89. doi: 10.1002/(sici)1099-0488(199805)36: 73.0.co;2-r.
  • Kohjiya, S., Murakami, K., Iio, S., Tanahashi, T., and Ikeda, Y..( 2001). “In situ filling of silica onto “green” natural rubber by the sol-gel process.” Rubber Chemistry and Technology 74 (1): 16–27. doi: 10.5254/1.3547635.
  • Dewimille, L., Bresson, B., and Bokobza, L.. (2005). “Synthesis, structure and morphology of poly (dimethylsiloxane) networks filled with in situ generated silica particles.” Polymer 46 (12): 4135–43. doi: 10.1016/j.polymer.2005.02.049.
  • Kluppel, M. (2003). “The role of disorder in filler reinforcement of elastomers on various length scales.” Filler-Reinforced Elastomers Scanning Force Microscopy 164: 1–86. doi: 10.1007/b11054.
  • Osman, M. A., Atallah, A., Muller, M., and Suter, U. W.. (2001). “Reinforcement of poly(dimethylsiloxane) networks by mica flakes.” Polymer 42 (15): 6545–56. doi: 10.1016/s0032-3861(01)00128-8.
  • Arroyo, M., Lopez-Manchado, M. A., and Herrero, B.. (2003). “Organo-montmorillonite as substitute of carbon black in natural rubber compounds.” Polymer 44 (8): 2447–53. doi: 10.1016/s0032-3861(03)00090-9.
  • Bala, P., Samantaray, B. K., Srivastava, S. K., and Nando, G. B.. (2004). “Organomodified montmorillonite as filler in natural and synthetic rubber.” Journal of Applied Polymer Science 92 (6): 3583–92. doi: 10.1002/app.20401.
  • Gauthier, C., Chazeau, L., Prasse, T., and Cavaille, J. Y.. (2005). “Reinforcement effects of vapour grown carbon nanofibres as fillers in rubbery matrices.” Composites Science and Technology 65 (2): 335–43. doi: 10.1016/j.compscitech.2004.08.003.
  • Barraza, H. J., Pompeo, F., O'Rear, E. A., and Resasco, D. E.. (2002). “SWNT-filled thermoplastic and elastomeric composites prepared by miniemulsion polymerization.” Nano Letters 2 (8): 797–802. doi: 10.1021/nl0256208.
  • Frogley, M. D., Ravich, D., and Wagner, H. D.. (2003). “Mechanical properties of carbon nanoparticle-reinforced elastomers.” Composites Science and Technology 63 (11): 1647–54. doi: 10.1016/s0266-3538(03)00066-6.
  • Lopez-Manchado, M. A., Biagiotti, J., Valentini, L., and Kenny, J. M.. (2004). “Dynamic mechanical and raman spectroscopy studies on interaction between single-walled carbon nanotubes and natural rubber.” Journal of Applied Polymer Science 92 (5): 3394–400. doi: 10.1002/app.20358.
  • Yue, D. M., Liu, Y. F., Shen, Z. M., and Zhang, L. Q.. (2006). “Study on preparation and properties of carbon nanotubes/rubber composites.” Journal of Materials Science 41 (8): 2541–4. doi: 10.1007/s10853-006-5331-7.
  • Balberg, I., and Binenbaum, N.. (1985). “Cluster structure and conductivity of three-dimensional continuum systems.” Physical Review A 31 (2): 1222–5.
  • Ma, H. M., and Gao, X. L.. (2008). “A three-dimensional Monte Carlo model for electrically conductive polymer matrix composites filled with curved fibers.” Polymer 49 (19): 4230–8. doi: http://dx.doi.org/10.1016/j.polymer.2008.07.034.
  • Berhan, L., and Sastry, A. M.. (2007). “Modeling percolation in high-aspect-ratio fiber systems. II. The effect of waviness on the percolation onset.” Physical Review E 75 (4): 041121.
  • Natsuki, Toshiaki, Endo, Morinobu, and Takahashi, Tatsuhiro. (2005). “Percolation study of orientated short-fiber composites by a continuum model.” Physica A: Statistical Mechanics and its Applications 352 (2–4): 498–508. doi: http://dx.doi.org/10.1016/j.physa.2004.12.059.
  • Li, Chunyu, and Chou, Tsu-Wei. (2007). “Continuum percolation of nanocomposites with fillers of arbitrary shapes.” Applied Physics Letters 90 (17): doi: doi:http://dx.doi.org/10.1063/1.2732201.
  • Oskouyi, Amirhossein, Sundararaj, Uttandaraman, and Mertiny, Pierre. (2014). “Tunneling conductivity and piezoresistivity of composites containing randomly dispersed conductive nano-platelets.” Materials 7 (4): 2501–21.
  • Karasek, Ludek, Meissner, Bohumil, Asai, Shigeo, and Sumita, Masao. (1996). “Percolation concept: polymer-filler gel formation, electrical conductivity and dynamic electrical properties of carbon-black-filled rubbers.” Polym J 28 (2): 121–6. doi: 10.1295/polymj.28.121.
  • Bokobza, L. (2004). “The reinforcement of elastomeric networks by fillers.” Macromolecular Materials and Engineering 289 (7): 607–21. doi: 10.1002/mame.200400034.
  • ——–. (2007). “Multiwall carbon nanotube elastomeric composites: A review.” Polymer 48 (17): 4907–20. doi: 10.1016/j.polymer.2007.06.046.
  • Iijima, S. (1991). “Helical microtubules of graphitic carbon.” Nature 354 (6348): 56–8. doi: 10.1038/354056a0.
  • Bachtold, A., Hadley, P., Nakanishi, T., and Dekker, C.. (2001). “Logic circuits with carbon nanotube transistors.” Science 294 (5545): 1317–20. doi: 10.1126/science.1065824.
  • Derycke, V., Martel, R., Appenzeller, J., and Avouris, P.. (2001). “Carbon nanotube inter- and intramolecular logic gates.” Nano Letters 1 (9): 453–6. doi: 10.1021/nl015606f.
  • Rotkin, Slava V., and Zharov, Ilya. (2002). “Nanotube light-controlled electronic switch.” International Journal of Nanoscience 01 (03–04): 347–55. doi: doi:10.1142/S0219581´02000280.
  • Akita, S., Nishijima, H., Nakayama, Y., Tokumasu, F., and Takeyasu, K.. (1999). “Carbon nanotube tips for a scanning probe microscope: their fabrication and properties.” Journal of Physics D-Applied Physics 32 (9): 1044–8. doi: 10.1088/0022-3727/32/9/316.
  • Cheung, C. L., Hafner, J. H., Odom, T. W., Kim, K., and Lieber, C. M.. (2000). “Growth and fabrication with single-walled carbon nanotube probe microscopy tips.” Applied Physics Letters 76 (21): 3136–8. doi: 10.1063/1.126548.
  • Wilson, N. R., Cobden, D. H., and Macpherson, J. V.. (2002). “Single-wall carbon nanotube conducting probe tips.” Journal of Physical Chemistry B 106 (51): 13102–5. doi: 10.1021/jp026583b.
  • Yenilmez, E., Wang, Q., Chen, R. J., Wang, D. W., and Dai, H. J.. (2002). “Wafer scale production of carbon nanotube scanning probe tips for atomic force microscopy.” Applied Physics Letters 80 (12): 2225–7. doi: 10.1063/1.1464227.
  • Ye, Q., Cassell, A. M., Liu, H. B., Chao, K. J., Han, J., and Meyyappan, M.. (2004). “Large-scale fabrication of carbon nanotube probe tips for atomic force microscopy critical dimension Imaging applications.” Nano Letters 4 (7): 1301–8. doi: 10.1021/nl049341r.
  • Breuer, O., and Sundararaj, U.. (2004). “Big returns from small fibers: A review of polymer/carbon nanotube composites.” Polymer Composites 25 (6): 630–45. doi: 10.1002/pc.20058.
  • Wise, K. E., Park, C., Siochi, E. J., and Harrison, J. S.. (2004). “Stable dispersion of single wall carbon nanotubes in polyimide: the role of noncovalent interactions.” Chemical Physics Letters 391 (4–6): 207–11. doi: 10.1016/j.cplett.2004.04.096.
  • Ajayan, P. M., Schadler, L. S., Giannaris, C., and Rubio, A.. (2000). “Single-walled carbon nanotube-polymer composites: Strength and weakness.” Advanced Materials 12 (10): 750–+. doi: 10.1002/(sici)1521-4095(200005)12: 103.0.co;2-6.
  • Shaffer, M., and Kinloch, I. A.. (2004). “Prospects for nanotube and nanofibre composites.” Composites Science and Technology 64 (15): 2281–2. doi: 10.1016/j.compscitech.2004.01.018.
  • Thostenson, E. T., Ren, Z. F., and Chou, T. W.. (2001). “Advances in the science and technology of carbon nanotubes and their composites: a review.” Composites Science and Technology 61 (13): 1899–912. doi: 10.1016/s0266-3538(01)00094-x.
  • Krüger, Anke. (2010). Carbon materials and nanotechnology. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA.
  • Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., Grigorieva, I. V., and Firsov, A. A.. (2004). “Electric field effect in atomically thin carbon films.” Science 306 (5696): 666–9. doi: 10.1126/science.1102896.
  • Salavagione, Horacio J., Martínez, Gerardo, and Ellis, Gary. (2011). “Graphene-based polymer nanocomposites.” In Physics and applications of graphene—experiments, Mikhailov, S. (ed), 169–92. In Tech, ISBN: 978-953-307-217-3, Available from http://www.intechopen.com/books/physics-and-applications-of-graphene-experiments/graphene-based-polymer-nanocomposites.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.