214
Views
10
CrossRef citations to date
0
Altmetric
Original Articles

Antioxidant Effect of Hydroxylated Diamond Nanoparticles Measured in Soybean Oil

, &
Pages 1024-1032 | Received 06 May 2015, Accepted 30 May 2015, Published online: 04 Sep 2015

References

  • Martin, R., Alvaro, M., Herance, J. R., and Garcia, H. (2010) Fenton-treated functionalized diamond nanoparticles as gene delivery system. NANO ACS, 4: 65–74, DOI: 10.1021/nn901616c
  • Martin, R., Heydron, P., Alvaro, M., and Garcia, H. (2009) General strategy for high-density covalent functionalization of diamond nanoparticles using fenton chemistry. Chem. Mater., 21: 4505–4515, DOI: 10.1021/cm9012602
  • Krueger, A. and Lang, D. (2012) Functionality is key: Recent progress in the surface modification of nanodiamond. Adv. Funct. Mater., 22(5): 890–906, DOI: 10.1002/adfm.201102670
  • Ho, D. (2009) Beyond the sparkle: The impact of nanodiamonds as biolabeling and therapeutic agents. ACS Nano, 3(12): 3825–3829, DOI: 10.1021/nn9016247
  • Liu, K.-K., Zheng, W.-W., Wang, C.-C., Chiu, Y.-C., Cheng, C.-L., Lo, Y.-S., Chen, C., and Chao, J.-I. (2010) Covalent linkage of nanodiamond-paclitaxel for drug delivery and cancer therapy. Nanotechnology, 21: 1–14, DOI: 10.1088/0957-4484/21/31/315106
  • Solarska, K., Gajewska, A., Skolimowski, J., Woś, R., Bartosz, G., and Mitura, K. (2010) Effect of nonmodified and modified nanodiamond particles by Fenton reaction on human endothelial cells. Journal of Achievements In Materials and Manufacturing Engineering, 43(2): 603–607, Downloaded from http://www.journalamme.org/papers_vol43_2/4329.pdf
  • Panyam, J. and Labhasetwar, V. (2003) Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv. Drug. Delivery Rev., 55: 329–347, http://dx.doi.org/10.1016/S0169-409X(02)00228-4
  • Liu, K. K., Wang, C. C., Cheng, C. L., and Chao, J. I. (2009) Endocytic carboxylated nanodiamond for the labeling and tracking of cell division and differentiation in cancer and stem cells. Biomaterials, 30: 4249–4259, http://dx.doi.org/10.1016/j.biomaterials.2009.04.056
  • Fijalkowski, M., Karczemska, A., Lysko, J. M., Zybala, R., Kozanecki, M., Filipczak, P., Ralchenko, V., Walock, M., Stanishevsky, A., and Mitura, S. (2015) Nanostructured diamond device for biomedical applications. Journal of Nanoscience and Nanotechnology, 15(2): 1006–1013, DOI:10.1166/jnn.2015.9743
  • Schrand, A. M., Dai, L., Schlager, J. J., Hussain, S. M., and Osawa, E. (2007) Differential biocompatibility of carbon nanotubes and nanodiamonds. Diamond & Related Materials, 16: 2118–2123, http://dx.doi.org/10.1016/j.diamond.2007.07.020
  • Ushizawa, K., Sato, Y., Mitsumori, T., Machinami, T., Ueda, T., and Ando, T. (2002) Covalent immobilization of DNA on diamond and its verification by diffuse reflectance infrared spectroscopy. Chem. Phys. Lett., 351: 105–108, http://dx.doi.org/10.1016/S0009-2614(01)01362-8
  • Yang, W. (2002) DNA-modified nanocrystalline diamond thin-films as stable, biologically active substrates. Nat. Mater., 1: 253–257, DOI: 10.1038/nmat809
  • Cheng, C. Y., Perevedentseva, E., Tu, J. S., Chung, P. H., Chenga, C. L., Liu, K. K., Chao, J. I., Chen, P. H., and Chang, C. C. (2007) Direct and in vitro observation of growth hormone receptor molecules in A549 human lung epithelial cells by nanodiamond labelling. Appl. Phys. Lett., 90: 163903-1–163903-3, http://dx.doi.org/10.1063/1.2727557
  • Huang, H., Pierstorff, E., Osawa, E., and Ho, D. (2007) Active nanodiamond hydrogels for chemotherapeutic delivery. Nano. Lett., 7: 3305–3314, DOI: 10.1021/nl071521o
  • Yeap, W. S., Chen, S., and Loh, K. P. (2009) Detonation nanodiamond: An organic platform for the suzuki coupling of organic molecules. Langmuir, 25: 185–191, DOI: 10.1021/la8029787
  • Cheng, J., He, J., Li, C., and Yang, Y. Article facile approach to functionalize nanodiamond particles with V-shaped polymer brushes. Chem. Mater., 20: 4224–4230, DOI: 10.1021/cm800357g
  • Barras, A., Szunerits, S., Marcon, L., Monfilliette-Dupont, N., and Boukherroub, R. (2010) Functionalization of diamond nanoparticles using “Click” chemistry. Langmuir, 26(16): 13168–13172, DOI: 10.1021/la101709q
  • Barras, A., Lyskawa, J., Szunerits, S., Woisel, P., and Boukherroub, R. (2011) Direct functionalization of nanodiamond particles using dopamine derivatives. Langmuir, 27: 12451–12457, DOI: 10.1021/la202571d
  • Moore, L. K., Gatica, M., Chow, E. K., and Ho, D. (2012) Diamond-based nanomedicine: Enhanced drug delivery and imaging. Disruptive Science and Technology, 1(1): 54–61 DOI:10.1089/dst.2012.0007
  • Holt, K. B., Ziegler, C., Caruana, D. J., Zang, J. B., Millan-Barrios, E. J., Hu, J. P., and Foord, J. S. (2008) Redox properties of undoped 5 nm diamond nanoparticles. Physical Chemistry Chemical Physics, 10: 303–310, DOI: 10.1039/B711049A
  • Batory, M. and Bąkowicz-Mitura, K. (2009) Application of diamond powders in cosmetics. Polish Journal of Cosmetology, 12(4): 238–250
  • Batory, M., Batory, D., Grabarczyk, J., Kaczorowski, W., Kupcewicz, B., Mitura, K., Nasti, T. H., Yusuf, N., and Niedzielski, P. (2012) Biological properties of carbon powders synthesized using chemical vapour deposition and detonation methods. Journal of Nanoscience and Nanotechnology, 12(12): 9037–9046, DOI: 10.1166/jnn.2012.6745
  • Lunkin, V. V. Patent: Cosmetic Composition, RU 2257889. [http://russianpatents.com/patent/225/2257889.html]
  • Schrand, A. M., Ciftan Hens, S. A., and Shenderova, O. A. (2009) Nanodiamond particles: Properties and perspectives for bioapplications. Critical Reviews in Solid State and Materials Sciences, 34: 18–74, DOI: 10.1080/10408430902831987
  • Lee, M. Y. and Ji, A. Y. (2011) Antioxidant effect of functional nanodiamond and a use therefore, Patent: Nanodiamond, WO/2011/115314; 2011
  • Mohanraj, V. J. and Chen, Y. (2006) Nanoparticles – A review. Tropical Journal of Pharmaceutical Research, 5(1): 561–573, DOI: 10.4314/tipr.v5i1.14634
  • Jarre, G., Liang, Y., Betz, P., Lang, D., and Krueger, A. (2011) Playing the surface game – Diels-Alder reactions on diamond Nanoparticles. Chem. Commun., 47: 544–546, DOI: 10.1039/C0CC02931A
  • AOCS Official and Tentative Methods (1973) Association of Oil Chemists Society. 3rd ed. Vol. 1, Washington, D. C., USA.
  • International Union of Pure and Applied Chemistry (IUPAC) (1997) Standard Methods for the Analysis of Oils, Fats and Derivatives. 7th ed. Blackwell Scientific Publications: Boston, M. A., 210–211.
  • Akoh, C. C. and Min, B. D. (2002) Food lipids: Chemistry. In Nutrition and Biotechnology, 2nd ed., Marcel Dekker: New York, USA, 385.
  • Gulla, S., Waghray, K., and Reddy, U. (2010) Blending of oils – Does it improve the quality and storage stability, an experimental approach on soyabean and palmolein based blends. American Journal of Food Technology, 5: 182–194. DOI: 10.3923/ajft.2010.182.194
  • Wai, W. T., Saad, B., and Lim, B. P. (2009) Determination of Totox value in palm oleins using a FI-potentiometric analyser. Food Chemistry, 113: 285–290, DOI: 10.1016/j.foodchem.2008.06.082
  • Labrinea, E. P., Thomaidis, N. S., and Giorgiou, C. A. (2001) Direct olive oil anisidine value determination by flow injection. Analytica Chimica Acta, 448: 201–206, DOI: 10.1016/S0003-2670(01)01336-8
  • Narasimhan, S., Vasanth Kumar, A. K., Ravi, R., and Chand, N. (1999) Optimization of Kreis test for edible oils. Journal of Food Lipids, 6: 107–115, DOI: 10.1111/j.1745-4522.1999.tb00136.x

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.