180
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Calix[4]arene-Modified Multi-Walled Carbon Nanotubes: Novel High-Efficient Sorbent for Organic Dyes

, &
Pages 1077-1085 | Received 11 Jul 2015, Accepted 14 Jul 2015, Published online: 30 Sep 2015

References

  • Roy, A., Adhikari, B., and Majumder, S. B. (2013) Equilibrium, kinetic, and thermodynamic studies of azo dye adsorption from aqueous solution by chemically modified lignocellulosic jute fiber. Ind. Eng. Chem. Res., 52: 6502–6509.
  • Peternel, I. T., Koprivanac, N., Bozic, A. M. L., and Kusic, H. M. (2007) Comparative study of UV/TiO2, UV/ZnO and photo-Fenton processes for the organic reactive dye degradation in aqueous solution. J. Hazard. Mater., 148: 477–484.
  • Crini, G. and Badot, P. M. (2008) Application of chitosan, a natural aminopolysaccharide, for dye removal from aqueous solutions by adsorption processes using bath studies: A review of recent literature. Prog. Polym. Sci., 33: 399–447.
  • Purkait, M. K., DasGupta, S., and De, S. (2004) Resistance in series model for micellar enhanced ultrafiltration of eosin dye. J. Colloid Interf. Sci., 270: 496–506.
  • Chakraborty, S., Purkait, M. K., DasGupta, S., De, S., and Basu, J. K. (2003) Nanofiltration of textile plant effluent for color removal and reduction in COD. Sep. Purif. Technol., 31: 141–151.
  • Wang, Y. R. and Chu, W. (2001) Adsorption and removal of a xanthene dye from aqueous solution using two solid wastes as sorbent. Ind. Eng. Chem. Res., 50: 8734–8741.
  • Hu, J., Shao, D. D., Chen, C. L., Sheng, G. D., Ren, X. M., and Wang, X. K. (2011) Removal of 1-naphthylamine from aqueous solution by multiwall carbon nanotubes/iron oxides/cyclodextrin Composite. J. Hazard. Mater., 185: 463–471.
  • Xu, P., Zeng, G. M., Huang, D. L., Lai, C., Zhao, M. H., Wei, Z., Li, N. J., Huang, C., and Xie, G. X. (2012) Adsorption of Pb (II) by iron oxide nanoparticles immobilized phanerochaete chrysosporium: Equilibrium, kinetic, thermodynamic and mechanisms analysis. Chem. Eng. J., 203: 423–429.
  • Eskandarian, L., Arami, M., and Pajootan, E. (2014) Evaluation of adsorption characteristics of multiwalled carbon nanotubes modified by a poly(propylene imine) dendrimer in single and multiple dye solutions: Isotherms, kinetics, and thermodynamics. J. Chem. Eng. Data, 59: 444–454.
  • Chang, P. R., Zheng, P. W., Liu, B. X., Anderson, D. P., Yu, J. G., and Ma, X. F. (2011) Characterization of magnetic soluble starch-functionalized carbon nanotubes and its application for the adsorption of the dyes, J. Hazard. Mater., 186: 2144–2150.
  • GeyikÇi, F., (2013) Adsorption of acid blue 161 (AB 161) dye from water by multi-walled carbon nanotubes. Fullerenes Nanotubes Carbon Nanostruct., 21: 579–593.
  • Wang, S. B., Ng, C. W., Wang, W. T., Li, Q., and Li, L. Q. (2012) Comparative study on the adsorption of acid and reactive dyes on multiwall carbon nanotubes in single and binary dye systems. J. Chem. Eng. Data, 57: 1563–1569.
  • Fan, J., Shi, Z., Ge, Y., Wang, Y., Wang, J., and Yin, J. (2012) Mechanical reinforcement of chitosan using unzipped multiwalled carbon nanotube oxides. Polymer, 53: 657–664.
  • Zhu, H. Y., Fu, Y. Q., Jiang, R., Yao, J., Liu, L., Chen, Y. W., Xiao, L., and Zeng, G. M. (2013) Preparation, characterization and adsorption properties of chitosan modified magnetic graphitized multi-walled carbon nanotubes for highly effective removal of a carcinogenic dye from aqueous solution. Appl. Surf. Sci., 285: 865–873.
  • Chang, P. R., Zheng, P. W., Liu, B. X., Anderson, D. P., Yu, J., and Ma, X. F. (2011) Characterization of magnetic soluble starch-functionalized carbon nanotubes and its application for the adsorption of the dyes. J. Hazard. Mater., 186: 2144–2150.
  • Cheng, J., Chang, P. R., Zheng, P. W., and Ma, X. F. (2014) Characterization of magnetic carbon nanotube–cyclodextrin composite and its adsorption of dye. Ind. Eng. Chem. Res., 53: 1415–1421.
  • Asfari, Z., Böhmer, V., Harrowfield, J., Vicens, J., and Saadioui, M. Calixarenes 2001, 1st ed. Kluwer Academic: Dordrecht, 2001.
  • Uysal, G., Memon, S., and Yilmaz, M. (2001) Synthesis and binding properties of polymeric calix[4]arene nitriles. React. Funct. Polym., 50: 77–84.
  • Memon, S., Tabakci, M., Roundhill, D. M., and Yilmaz, M. (2005) A useful approach toward the synthesis and metal extractions with polymer appended thioalkyl calix[4]arenes. Polymer, 46: 1553–1559.
  • Gungor, O., Memon, S., Yilmaz, M., and Roundhill, D. M. (2005) Synthesis of alkyl nitrile and alkyl benzonitrile derivatives of calix[4]arene and their polymer supported analogues: A comparative study in two-phase extraction systems. React. Funct. Polym., 63: 1–9.
  • Akceylan, E., Bahadir, M., and Yilmaz, M. (2009) Removal efficiency of a calix[4]arene-based polymer for water-soluble carcinogenic direct azo dyes and aromatic amines. J. Hazard. Mater., 162: 960–966.
  • Yilmaz, E. O., Sirit, A., and Yilmaz, M. (2007) A calix[4]arene oligomer and two betacyclodextrin polymers: Synthesis and sorption studies of azo dyes. J. Macromol. Sci. A Pure Appl. Chem., 44: 167–174.
  • Yilmaz, A., Yilmaz, E., and Yilmaz, M. (2007) Removal of azo dyes from aqueous solutions using calix[4]arene and cyclodextrin. Dyes Pigm., 74: 54–60.
  • Kamboh, M. A., Solangi, I. B., and Sherazi, S. T. H. (2011) A highly efficient calix[4]arene based resin for the removal of azo dyes. Desalination, 268: 83–89.
  • Kamboh, M. A., Solangi, I. B., and Memon, S. (2011) Synthesis and application of p-tert-butylcalix[8]arene immobilized material for the removal of azo dyes. J. Hazard. Mater., 186: 651–656.
  • Chen, M., Shang, T., Fang, W., and Diao, G. (2011) Study on adsorption and desorption properties of the starch grafted p-tert-butyl-calix[n]arene for butyl Rhodamine B solution. J. Hazard. Mater., 185: 914–920.
  • Yang, F. F., Huang, Z. S., Zhang, X. Y., and Guo, H. Y. (2010) Syntheses, cations and aniline compounds adsorption properties of novel thiacalix[4]amido-based netty polymers. Iran. Polym. J., 19: 309–318.
  • Guo, H. Y., Yang, F. F., Chai, X. F., Jiao, Z. Y., and Li, C. C. (2012) Synthesis of novel calix[6]-1,4-crown-based netty polymer and its excellent adsorption capabilities for aniline derivative. Iran. Polym. J., 21: 451–456.
  • Yang, F. F., Liu, W. W., Xie, J. W., Bai, X. Y., and Guo, H. Y. (2013) Novel deep-cavity calix[4]arene derivatives with s-triazine conjugate systems: Synthesis and complexation for dyes. J. Incl. Phenom. Macrocycl. Chem., 76: 311–316.
  • Yang, F. F., Zhang, Y. M., Guo, H. Y., and Wei, X. L. (2013) High efficient liquid membrane transport of dyes using calix[4]arene-linked triphenylene dimers as carriers. Separation Sci. Technol., 48: 1565–1571.
  • Bai, X. Y., Yang, F. F., Xie, J. W., and Guo, H. Y. (2013) Novel 1,2-3,4-bridged and 1,3-bridged calix[4]arene based on large s-triazine conjugate systems: Synthesis and complexation for dyes. J. Macromol. Sci. Part A Pure Appl. Chem., 50: 334–339.
  • Guo, H. Y., Yang, F. F., Jiao, Z. Y., and Lin, J. R. (2013) Click synthesis and dyes extraction capabilities of novel thiacalix[4]arene derivatives with triazole groups and hydrogen bond groups. Chin. Chem. Lett., 24: 450–452.
  • Yadav, S. K., Mahapatra, S. S., Rhyu, H. J. and Cho, J. W. (2013) Synthesis of calix[4]arene-segmented polyurethane and its nanocomposites with single-walled carbon nanotubes Polym. Bull., 70: 1697–1707.
  • Yang, F. F., Zheng, X. H., Guo, H. Y., Liu, C. H., and Guo, Y. (2008) The synthesis and complexation property of novel of biscalixarene: Dumbbell shaped biscalix[4]-1,3-aza-crown. J. Incl. Phenom. Macrocycl. Chem., 62: 371–375.
  • Yang, F. F., Bai, X. Y., Xu, B. T., and Guo, H. Y. (2013) Triphenylene-modified chitosan: Novel high efficient sorbent for cationic and anionic dyes. Cellulose, 20: 895–906.
  • Shao, D. D., Sheng, G. D., Chen, C. L., Wang, X. K., and Nagatsu, M. (2010) Removal of polychlorinated biphenyls from aqueous solutions using β-cyclodextrin grafted multiwalled carbon nanotubes. Chemosphere, 79: 679–685.
  • Yang, F. F., Guo, H. Y., Xie, J. W., and Lin, J. R. (2011) Synthesis of calixarene-linked discotic triphenylene. Eur. J. Org. Chem., 26: 5141–5145.
  • Wang, Z. H., Xiang, B., Cheng, R. M., and Li, Y. J. (2010) Behaviors and mechanism of acid dyes sorption onto diethylenetriamine-modified native and enzymatic hydrolysis starch. J. Hazard. Mater., 180: 224–232.
  • Langmuir, I. (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc., 40: 1361–1403.
  • Giles, C. H., Smith, D., and Huitson, A. (1974) A general treatment and classification of the solute adsorption isotherm. I. Theoretical. J. Colloid Interf. Sci., 47: 755–765.
  • Konicki, W., Pelech, I., Mijowska, E., and Jasińska, I. (2012) Adsorption of anionic dye Direct Red 23 onto magnetic multi-walled carbon nanotubes–Fe3C nanocomposite: Kinetics, equilibrium and thermodynamics. Chem. Eng. J., 210: 87–95.
  • Machado, F. M., Bergmann, C. P., Fernandes, T. H. M., and Lima, E. C., Royer, B., Calvete, T., and Fagan, S. B. (2011) Adsorption of Reactive red M-2BE dye from water solutions by multi-walled carbon nanotubes and activated carbon. J. Hazard.Mater., 192: 1122–1131.
  • Yan, L., Chang, P. R., Zheng, P. W., and Ma, X. F. (2012) Characterization of magnetic guar gum-grafted carbon nanotubes and the adsorption of the dyes. Carbohyd. Polym., 87: 1919–1924.
  • Hu, J., Shao, D. D., Chen, C. L., Sheng, G. D., Ren, X. M., and Wang, X. K. (2011) Removal of 1-naphthylamine from aqueous solution by multiwall carbon nanotubes/Iron oxides/cyclodextrin composite. J. Hazard. Mater., 185: 463–469.
  • Luo, P., Zhao, Y. F., Zhang, B., Liu, J. D., Yang, Y., and Liu, J. F. (2010) Study on the adsorption of neutral red from aqueous solution onto halloysite nanotubes. Water Res., 44: 1489–1496.
  • Konicki, W., Pelech, I., Mijowska, E., and Jasińska, I. (2014) Adsorption kinetics of acid dye acid Red 88 onto magnetic multi-walled carbon nanotubes–Fe3C nanocomposite. Clean-Soil, Air, Water, 42: 284–294.
  • Machado, F. M., Bergmann, C. P., Lima, E. C., Royer, B., Souza, S. E., Jauris, I. M., Calvete, T., and Fagan, S. B. (2012) Adsorption of Reactive Blue 4 dye from water solutions by carbon nanotubes: Experiment and theory, Phys. Chem. Chem. Phys., 14: 11139–11153.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.