98
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

On The Action of Ozone on Single-Wall Carbon Nanohorns (SWCNH)

, , , &
Pages 1095-1102 | Received 16 Jul 2015, Accepted 20 Jul 2015, Published online: 09 Nov 2015

References

  • Robin, J. J. (2004) The use of ozone in the synthesis of new polymers and the modification of polymers. Adv. Polym. Sci., 167: 35–79.
  • Cataldo, F., Ursini, O., and Angelini, G. (2010) Surface oxidation of rubber crumb with ozone. Polym. Degrad. Stabil., 95: 803–810.
  • Cataldo, F., Rosati, A., Lilla, E., and Ursini, O. (2011) On the action of ozone at high concentration on various grades of polyethylene and certain straight chain paraffins. Polym. Degrad. Stabil., 96: 955–964.
  • Cataldo, F., Lilla, L., and Ursini, O. (2011) Surface reaction of ozone at high concentration with isotactic and syndiotactic polypropylene. J. Macromol. Sci. Part A, 48: 607–618.
  • Razumovskii, S. D., Gorshenev, V. N., Kovarskii, A. L., Kuznetsov, A. M., and Shchegolikhin, A. N. (2007) Carbon nanostructure reactivity: reactions of graphite powders with ozone. Fullerenes Nanot. Carbon Nanostruct., 15: 53–63.
  • Krawczyk, P. (2011) Effect of ozone treatment on properties of expanded graphite. Chem. Eng. J., 172: 1096–1102.
  • Cataldo, F. (2007) Ozone reaction with carbon nanostructures 2: the reaction of ozone with milled graphite and different carbon black grades. J. Nanosci. Nanotech., 7: 1446–1454.
  • Cataldo, F. and Ursini, O. (2007) The role of carbon nanostructures in the ozonization of different carbon black grades, together with graphite and rubber crumb in an IR gas cell. Fullerenes Nanot. Carbon Nanostruct., 15: 1–20.
  • Valdés, H., Sánchez-Polo, M., Rivera-Utrilla, J., and Zaror, C. A. (2002) Effect of ozone treatment on surface properties of activated carbon. Langmuir, 18: 2111–2116.
  • Mawhinney, D. B. and Yates, J. T. (2001) FTIR study of the oxidation of amorphous carbon by ozone at 300 K—Direct COOH formation. Carbon, 39: 1167–1173.
  • Sutherland, I., Sheng, E., Bradley, R. H., and Freakley, P. K. (1996) Effects of ozone oxidation on carbon black surfaces. J. Mater. Sci., 31: 5651–5655.
  • Mawhinney, D. B., Naumenko, V., Kuznetsova, A., Yates, J. T., Liu, J., and Smalley, R. E. (2000) Infrared spectral evidence for the etching of carbon nanotubes: ozone oxidation at 298 K. J. Am. Chem. Soc., 122: 2383–2384.
  • Byl, O., Liu, J., and Yates, J. T. (2005) Etching of carbon nanotubes by ozone a surface area study. Langmuir, 21(9): 4200–4204.
  • Cataldo, F. (2008) A study on the action of ozone on multiwall carbon nanotubes. Fullerenes, Nanot. Carbon Nanostruct. 16: 1–17.
  • Vennerberg, D. C., Quirino, R. L., Jang, Y., and Kessler, M. R. (2014) Oxidation behavior of multiwalled carbon nanotubes fluidized with ozone. ACS Appl. Mater. Interf., 6: 1835–1842.
  • Xu, Z., Yue, M., Chen, L., Zhou, B., Shan, M., Niu, J., and Qian, X. (2014) A facile preparation of edge etching, porous and highly reactive graphene nanosheets via ozone treatment at a moderate temperature. Chem. Eng. J., 240: 187–194.
  • Rider, A. N., An, Q., Thostenson, E. T., and Brack, N. (2014) Ultrasonicated-ozone modification of exfoliated graphite for stable aqueous graphitic nanoplatelet dispersions. Nanotechnology, 25: 495607.
  • Cataldo, F. (2007) Ozone reaction with carbon nanostructures 1: reaction between solid C60 and C70 fullerenes and ozone. J. Nanosci. Nanotech., 7: 1439–1445.
  • Harris, P. J. F., Tsang, S. C., Claridge, J. B., and Green, M. L. H. (1994) High resolution electron microscopy studied of a microporous carbon produced by arc evaporation. J. Chem. Soc. Faraday. Trans., 90: 2799–2802.
  • Iijima, S., Yudasaka, M., Yamada, R., Bandow, S., Suenaga, K., Kokai, F., and Takahashi, K. (1999) Nano-aggregates of single-walled graphitic carbon nanohorns. Chem. Phys. Lett., 309: 165–170.
  • Takikawa, T., Ikeda, M., Hirahara, K., Hibi, Y., Tao, Y., Ruiz, P. A., Sakakibara, T., Itoh, S., and Iijima, S. (2002) Fabrication of single-walled carbon nanotubes and nanohorns by means of a torch arc in open air. Phys. B 323: 277–279.
  • Li, N., Wang, Z., Zhao, K., Shi, Z., Gu, Z., and Xu, S. (2010) Synthesis of single-wall carbon nanohorns by arc-discharge in air and their formation mechanism. Carbon, 48: 1580–1585.
  • Wang, H., Chhowalla, M., Sano, N., Jia, S., and Amaratunga, G. A. J. (2004) Large-scale synthesis of single-walled carbon nanohorns by submerged arc. Nanotechnology, 15: 546–550.
  • Yamaguchi, T., Bandow, S., and Iijima, S. (2004) Synthesis of carbon nanohorn particles by simple pulsed arc discharge ignited between pre-heated carbon rods. Chem. Phys. Lett., 389: 181–185.
  • Pagona, G., Tagmatarchis, N., Fan, J., Yudasaka, M., and Iijima, S. (2006) Cone-end functionalization of carbon nanohorns. Chem. Mater., 18: 3918–3920.
  • Cioffi, C., Campidelli, S., Brunetti, F. G., Meneghetti, M., and Prato, M. (2006) Functionalisation of carbon nanohorns. Chem. Commun., 20: 2129–2131.
  • Miyawaki, J., Yudasaka, M., Azami, T., Kubo, Y., and Iijima, S. (2008) Toxicity of single- walled carbon nanohorns. ACS Nano, 2: 213–226.
  • Iglesias-Groth, S., Cataldo, F., Angelini, G., and Hafez, Y. (2014) Single-walled carbon nanohorn: electronic absorption spectra in neutral and oxidized state, Fullerenes Nanot. Carbon Nanostruct., 22: 938–948.
  • Cataldo, F., Iglesias-Groth, S., Hafez, Y., and Angelini, G. (2014) Neutron bombardment of single wall carbon nanohorn (SWCNH): DSC determination of the stored Wigner-Szilard energy. J. Radioanal. Nucl. Chem., 299: 1955–1963.
  • Valentini, F., Ciambella, E., Conte, V., Sabatini, L., Ditaranto, N., Cataldo, F., Palleschi, G., Bonchio, M., Giacalone, F., Syrgiannis, Z., and Prato, M. (2014) Highly selective detection of Epinephrine at oxidized Single-Wall Carbon Nanohorns modified Screen Printed Electrodes (SPEs) Biosens. Bioelectron., 59: 94–98.
  • Cataldo, F. (2000) Essay on the synthesis of ozone. Part 1. Electrochemical methods. Recent R&D Electrochem., 3: 61–67.
  • Cataldo, F., Ursini, O., Lilla, E., and Angelini, G. (2010) Ozonolysis of α-Pinene, β-Pinene, d- and l-turpentine oil studied by chirooptical methods; some implications on the atmospheric chemistry of biogenic volatile organic compounds. Ozone Sci. Eng. 32: 274–285.
  • Cataldo, F. (2015) Thermal stability, decomposition enthalpy, and Raman spectroscopy of 1- alkene secondary ozonides. Tetrahedron Lett. 56: 994–998.
  • (a) Cataldo, F., Ori, O., and Iglesias-Groth S. (2010) Topological lattice descriptors of graphene sheets with fullerene-like nanostructures. Molec. Simulat. 36: 341–353. (b) Cataldo, F. (2002) The impact of a fullerene-like concept in carbon black science. Carbon, 40: 157–162.
  • Heymann, D., Bachilo, S. M., Weisman, R. B., Cataldo, F., Fokkens, R. H., Nibbering, N. M., Vis, R. D., and Chibante, L. F. (2000) C60O3, a fullerene ozonide: synthesis and dissociation to C60O and O2. J. Am. Chem. Soc., 122: 11473–11479.
  • Chapleski, R. C., Morris, J. R., and Troya, D. (2014) A theoretical study of the ozonolysis of C60: primary ozonide formation, dissociation, and multiple ozone additions. Phys. Chem. Chem. Phys., 16: 5977–5986.
  • Sabirov, S. Sh., Khursan, S. L., and Bulgakov, R. G. (2008) Ozone addition to C60 and C70 fullerenes: A DFT study. J. Mol. Graph. Model., 27: 124–130.
  • Bulgakov, R. G., Sabirov, D. S., and Dzhemilev, U. M. (2013) Oxidation of fullerenes with ozone. Russian Chem. Bull., 62: 304–324.
  • Heymann, D. and Weisman, B. (2006) Fullerene oxides and ozonides. C. R. Chimie, 9: 1107–1116.
  • Heymann, D. (2004) Ozonides and oxides of C60 and C70: A review. Fullerenes Nanot. Carbon Nanostruct., 12: 715–729.
  • Lin-Vien, D., Colthup, N. B., Fateley, W. G., and Grasselli, J. G. (1991) The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules. Academic Press: San Diego.
  • Cataldo, F. and Iglesias-Groth S. (2014) A Differential Scanning Calorimetric (DSC) study on heavy ozonized C60 fullerene. Fullerenes Nanot. Carbon Nanostruct., 23: 253–258.
  • Cataldo, F., Hafez, Y., and Iglesias-Groth S. (2015) Thermal decomposition of ozonized C70 fullerene and its reducing properties toward silver ions. Fullerenes Nanot. Carbon Nanostruct.23: 1037–1042.
  • Cataldo, F. (2014) Thermochemistry of ozonides decomposition. Eur. Chem. Bull., 3: 227–233.
  • Cataldo, F. (2013) Chemical and thermochemical aspects of the ozonolysis of ethyl oleate: decomposition enthalpy of ethyl oleate ozonide. Chem. Phys. Lipids, 175–176: 41–49.
  • Cataldo, F. (2015) Ethyl oleate and ethyl elaidate ozonides: thermal decomposition and photolysis. Ozone Sci. Engin. 37: 431–440.
  • Cataldo, F. (2014) Synthesis of silver nanoparticles by the action of heavy ozonized C60 fullerene on silver nitrate solutions. Fullerenes Nanot. Carbon Nanostruct., 23: 523–529.
  • Cataldo, F. and Kanazirev, V. (2013) Synthesis and thermal stability of mercury diacetylide Hg(C≡CH)2. Polyhedron, 62: 42–50.
  • Murakami, T., Fan, J., Yudasaka, M., Iijima, S., and Shiba, K. (2006) Solubilization of single- wall carbon nanohorns using a PEG-doxorubicin conjugate. Mol. Pharm. 3: 407–414.
  • Ajima, K., Murakami, T., Mizoguchi, Y., Tsuchida, K., Ichihashi, T., Iijima, S., and Yudasaka, M. (2008) Enhancement of in vivo anticancer effects of cisplatin by incorporation inside single-wall carbon nanohorns. ACS Nano 2: 2057–2064.
  • Nakamura, M., Tahara, Y., Ikehara, Y., Murakami, T., Tsuchida, K., Iijima, S., Yudasaka, I., and Waga, M. (2011) Single-walled carbon nanohorns as drug carriers: adsorption of prednisolone and anti-inflammatory effects on arthritis. Nanotechnology, 22(46): 465102.
  • Zimmermann, K. A., Inglefield Jr, D. L., Zhang, J., Dorn, H. C., Long, T. E., Rylander, C. G., and Rylander, M. N. (2014) Single-walled carbon nanohorns decorated with semiconductor quantum dots to evaluate intracellular transport. J. Nanoparticle Res., 16: 1–18.
  • Stankova, L., Fraczek-Szczypta, A., Blazewicz, M., Filova, E., Blazewicz, S., Lisa, V., and Bacakova, L. (2014) Human osteoblast-like MG 63 cells on polysulfone modified with carbon nanotubes or carbon nanohorns. Carbon, 67: 578–591.
  • Fabish, T. J. and Schleifer, D. E. (1984) Surface chemistry and the carbon black work function. Carbon, 22: 19–38.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.