176
Views
13
CrossRef citations to date
0
Altmetric
Original Articles

Cooperative topological accumulation of vacancies in honeycomb lattices

, , , &
Pages 353-362 | Received 21 Jan 2016, Accepted 15 Feb 2016, Published online: 03 Mar 2016

References

  • Meyer J.C., Kisielowski C., Erni R., Rossell M.D., Crommie M.F., Zettl A. (2008). Direct imaging of lattice atoms and topological defects in graphene membranes, Nano Lett., 8(11), 3582–3586. DOI: 10.1021/nl801386m
  • (a) Satuła, W., Dean, D. J., Gary, J., Mizutori, S., Nazarewicz, W. (1997). On the origin of the Wigner energy. Phys. Lett. B, 407: 103–109. (b) Ewels, C. P., Telling, R. H., El-Barbary, A. A., Heggie, M. I., & Briddon, P. R. (2003). Metastable Frenkel pair defect in graphite: Source of Wigner energy? Phys. Rev. Lett., 91: 025505.
  • (a) Cataldo, F. (2000). A Raman study on radiation-damaged graphite by γ-rays. Carbon, 38: 634–636. (b) Cataldo F., Ursini O., Nasillo G., Caponetti E., Carbone M., Valentini F., Braun, T. (2013). Thermal properties, Raman spectroscopy and TEM images of neutron-bombarded graphite. Fullerenes Nanotubes Carbon Nanostruct. 21: 634–643. (c) Cataldo F., Angelini G., Révay Z., Osawa E., Braun T. (2014). Wigner energy of nanodiamond bombarded with neutrons or irradiated with γ-radiation. Fullerenes, Nanotubes and Carbon Nanostruct. 22: 861–865. (d) Cataldo, F., Iglesias-Groth, S., Hafez, Y., Angelini, G. (2014). Neutron bombardment of single wall carbon nanohorn (SWCNH): DSC determination of the stored Wigner-Szilard energy. J. Radioanal. Nuclear Chem. 299: 1955–1963.
  • (a) Cataldo, F., Baratta, G. A., Strazzulla, G. (2002). He+ ion bombardment of C60 fullerene: An FT-IR and Raman Study. Fullerenes, Nanotubes Carbon Nanostruct. 10: 197–206. (b) Cataldo F., Baratta G. A., Ferini G., Strazzulla G. (2003). He+ Ion Bombardment of C70 Fullerene: An FT-IR and Raman Study. Fullerenes Nanotubes Carbon Nanostruct. 11: 191–199. (c) Xu, Z., Chen, L., Zhou, B., Li, Y., Li, B., Niu, J., Qian, X. (2013). Nano-structure and property transformations of carbon systems under γ-ray irradiation: a review. RSC Advances, 3: 10579–10597.
  • Zhao R., Zhuang J., Liang Z., Yan T. and Ding F. (2015) The formation mechanism of multiple vacancies and amorphous graphene under electron irradiation, Nanoscale DOI: 10.1039/c5nr00552c
  • Britnell, L.; Gorbachev, R. V.; Jalil, R.; Belle, B. D.; Schedin, F.; Mishchenko, A.; Georgiou, T.; Katsnelson, M. I.; Eaves, L.; Morozov, S. V.; Peres, N. M. R.; Leist, J.; Geim, A. K.; Novoselov, K. S.; Ponomarenko, L. A. (2012) Field-Effect Tunneling Transistor Based on Vertical Graphene Heterostructures. Science, 335, 947–950. DOI: 10.1126/science.1218461.
  • Geng Li, Haitao Zhou, Lida Pan, Yi Zhang, Li Huang, Wenyan Xu, Shixuan Du, Min Ouyang, Andrea C. Ferrari and Hong-Jun Gao, role of cooperative interactions in the intercalation of heteroatoms between graphene and a metal substrate. J. Am. Chem. Soc., 2015, 137, 7099–7103
  • IGI Entropy of Nanostructures. Topological Effects on Schottky Vacancies Concentration in Graphenic Bidimensional HC(N) Lattices, Ottorino Ori, Franco Cataldo, Mihai V. Putz (2016). In Sustainable Nanosystems Development,Properties,and Applications. Putz M.V, Mirica M. (eds.), IGI Global, Hershey, USA; in press.
  • Kaatz, F; Bultheel, A.; Ori, O., Kinetic Monte Carlo Approach to Schottky Defects in Noble Metal Nanoclusters. Submitted to Nanotechnology, 2016
  • T. M. Radchenko, V. A. Tatarenko, I. Yu. Sagalianov, Yu. I. Prylutskyy, G. V. Kurdyumov, Configurations of Structural Defects in Graphene and their Effects on its Transport Properties, in Graphene, Mechanical Properties, Potential Applications and Electrochemical Performance, Series: Chemistry Research and Applications, Editor B.T. Edwards, Nova Science Publishers, Inc., 2014 ISBN: 978-1-62948-796-0.
  • Ori, O.; Cataldo, F.; Putz, M.V., Topological anisotropy of Stone-Wales Waves in graphenic fragments. Int. J. Mol. Sci. 2011, 12, 7934–7949.
  • Putz M. V. and Ori O. (2012) Bondonic characterization of extended nanosystems: Application to graphene's nanoribbons, Chem. Phys. Lett. 548 pp 95–100, http://dx.doi.org/10.1016/j.cplett.2012.08.019
  • Ori O. and D'Mello M. (1992) A topological study of the structure of the C76 fullerene. Chem. Phys. Lett., 197(1,2), 49–54
  • Vukicevic D., Cataldo F., Ori O., Graovac A.(2011) Topological efficiency of C66 fullerene. Chem. Phys. Lett., 501:442–445.
  • Iranmanesh, A.; Ashrafi, A.R.; Graovac, A.; Cataldo, F.; Ori, O., Wiener Index Role in Topological Modeling of Hexagonal Systems-From Fullerenes to Graphene. In: Distance in Molecular Graphs Applications. Gutman, I.; Furtula, B. (eds.), University of Kragujevac, Kragujevac 2012 Mathematical Chemistry Monographs, Vol. 13, 135–155, ISBN:978-86-009-015-9.
  • Ori, O; Cataldo, F; Graovac, A (2009) Topological Ranking of C28 Fullerenes Reactivity. Fullerenes Nanotubes Carbon Nanostruct., 17(3), 308–323. DOI: 10.1080/15363830902782332
  • Cataldo, F; Ori, O; Iglesias-Groth, S (2010) Topological lattice descriptors of graphene sheets with fullerene-like nanostructures. Molecular Simulat. 36(5), 341–353 DOI: 10.1080/08927020903483262
  • A. Graovac, A. R. Ashrafi, O. Ori: Topological efficiency approach to fullerene stability—Case study with C50. Advances in Mathematical Chemistry, Vol. 2, 2014, 3–23 Basak, S. C., Restrepo G., Villaveces J. L. (eds.); Bentham Science Publishers, Sharjah, U.A.E.
  • Lehtinen O, Tsai I-L, Jalil R., Nair R.R., Keinonen J, Kaiser U, Grigorieva I.V., Non-invasive transmission electron microscopy of vacancy defects in graphene produced by ion irradiation, Nanoscale. 2014;6(12):6569–6576. doi: 10.1039/c4nr01918k.
  • Paz W.S., Scopel W.L., Freitas J.C.C. (2013) On the connection between structural distortion and magnetism in graphene with a single vacancy. Solid State Commun.; 171–176, 71–75.
  • Pokropivny, A. V., Ni, Y., Chalopin, Y., Solonin, Y. M. and Volz, S. (2014), Tailoring properties of graphene with vacancies. Phys. Status Solidi B, 251: 555–558. doi: 10.1002/pssb.201300301
  • Zan R., Ramasse Q.M., Bangert U., and Novoselov K.S. Graphene (2012) Reknits Its Holes. Nano Lett., 12 (8), 3936–3940. DOI: 10.1021/nl300985q
  • L. Wang,F. Yan, H. L. W. Chanb, F. Ding, A structural stability diagram of multiple vacancies and defect self-healing in graphene, Nanoscale, 2012, 4, 7489–7493.
  • Botari T., Paupitz R., da Silva Autreto P.A., Galvao D. S. (2016) Graphene healing mechanisms: A theoretical investigation, Carbon, 99, 302–309, http://dx.doi.org/10.1016/j.carbon.2015.11.070.
  • Özçelik, V. O., Gurel, H. H., & Ciraci, S. (2013). Self-healing of vacancy defects in single-layer graphene and silicene. Phys. Rev. B, 88(4), 045440.
  • Putz, M.V.; Ori, O.(2014) Bondonic Effects in Group-IV Honeycomb Nanoribbons with Stone-Wales Topological Defects. Molecules, 19, 4157–4188. doi:10.3390/molecules19044157

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.