361
Views
20
CrossRef citations to date
0
Altmetric
Original Articles

Highly conductive polymer materials based multi-walled carbon nanotubes as counter electrodes for dye-sensitized solar cells

, , &
Pages 380-384 | Received 29 Jan 2016, Accepted 09 Mar 2016, Published online: 23 Mar 2016

References

  • O'Regan, B., and Grätzel, M. (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 353(6346): 737–740.
  • Bai, Y., Yu, H., Li, Z., Amal, R., Lu, G. Q., and Wang, L. (2012) In Situ growth of a ZnO nanowire network within a TiO nanoparticle film for enhanced dye-sensitized solar cell performance. Adv. Mater., 24(23): 5850–5856.
  • Grätzel, M. (2004) Dye-sensitized solar cells. J. Photochem. Photobiol. A: Chem., 164(1–3): 183–185.
  • Sarica, H., Erten-Ela, S. (2012) Photovoltaic Characterizations of Nano-CdO based Dye Sensitized Solar Cells, Journal of Optoelectronics and Advanced Materials, 14 (9–10):753–757.
  • Erten-Ela, S. (2013) Photovoltaic performance of ZnO nanorod and ZnO : CdO nanocomposite layers in dye sensitized solar cells (DSSCs). Int. J. Photoen., Article ID 436831, 6 pages, http://dx.doi.org/10.1155/2013/436831.
  • Erten-Ela, S. (2014) Characterization and performance evaluation of dye sensitized solar cell using nanostructured TiO2 electrode. Int. J. Photoener., Article ID 941213, 6 pages, http://dx.doi.org/10.1155/2014/941213.
  • a) Delgado, J. L., Herranz, M. A., and Martin, N. (2008) The nano-forms of carbon. J. Mater. Chem., 18: 1417 –1426 b) Erten-Ela, S., Villegas, C., Delgado, J. L., and Martin, N. (2015) Pyrrolidino [60] and [70] fullerene homo and heterodimers as electron acceptors for OPV. New J. Chem., 39: 1477–1482.
  • Dai, H. (2002) Carbon nanotubes: opportunities and challenges. Surf. Sci., 500(1–3): 218–241.
  • Farukh, M., Singh, A. P., and Dhawan, S. K. (2015) Enhanced electromagnetic shielding behavior of multi-walled carbon nanotube entrenched poly (3,4-ethylenedioxythiophene) composites. Compos. Sci. Technol., 114: 94–102.
  • Bavio, M. A., Acosta, G. G., and Kessler, T. (2014) Synthesis and characterization of polyaniline and polyaniline—Carbon nanotubes nanostructures for electrochemic al supercapacitors. J. Power Sour., 245: 475–481.
  • Karim, M. R., Lee, C. J., and Lee, M. S. (2006) Synthesis and characterization of conducting polythiophene/carbon nanotubes composites. J. Polym. Sci. Part A: Polym. Chem., 44: 5283–5290.
  • Liu, J., Sun, J., and Gao, L. (2010) A promising way to enhance the electrochemical behavior of flexible single-walled carbon nanotube/polyaniline composite films. J. Phys. Chem. C, 114(46): 19614–19620.
  • Lota, K., Khomenko, V., and Frackowiak, E. (2004) Capacitance properties of poly(3,4-ethylenedioxythiophene)/carbon nanotubes composites. J. Phys. Chem. Solids, 65(2–3): 295–301.
  • Shin, H.-J., Jeon, S. S., and Im, S. S. (2011) CNT/PEDOT core/shell nanostructures as a counter electrode for dye-sensitized solar cells. Synth. Metals, 161(13–14): 1284–1288.
  • He, B., Tang, Q., Liang, T., and Li, Q. (2014) Efficient dye-sensitized solar cells from polyaniline-single wall carbon nanotube complex counter electrodes. J. Mater. Chem. A, 2(9): 3119–3126.
  • Luo, J., Niu, H.-J., Wu, W.-J., Wang, C., Bai, X.-D., and Wang, W. (2012) Enhancement of the efficiency of dye-sensitized solar cell with multi-wall carbon nanotubes/polythiophene composite counter electrodes prepared by electrodeposition. Solid State Sci., 14(1): 145–149.
  • Uygun, A., Oksuz, L., Yavuz, A. G., Guleç, A., and Sen, S. (2011) Characteristics of composite films deposited by atmospheric pressure uniform RF glow plasma. Curr. Appl. Phys., 11: 250–254.
  • Mathew, A. M., and Predeep, P. (2013) Plasma-polymerized elastomer/conducting polymer composite: Structural and optical characterization. Polym. Compos., 34(7): 1091–1098.
  • Selvakumar, M., and Bhat, D. K. (2008) J. Appl. Polymer. Sci., 107: 2165–2170.
  • Reddy, K. R., Park, W., Sin, B. C., Noh, J., and Lee, Y. (2009) Synthesis of electrically conductive and superparamagnetic monodispersed iron oxide-conjugated polymer composite nanoparticles by in situ chemical oxidative polymerization. J. Colloid Interf. Sci., 335(1): 34–39.
  • Xu, M., Zhang, J., Wang, S., Guo, X., Xia, H., Wang, Y., Zhang, S., Huang, W., and Wu, S. (2010) Gas sensing properties of SnO2 hollow spheres/polythiophene inorganic–organic hybrids. Sens. Actuat. B, 146: 8–13.
  • Tahmasebi, E., Yamini, Y., Moradi, M., and Esrafili, A. (2013) Polythiophene-coated Fe3O4 superparamagnetic composite: synthesis and application as a new sorbent for solid-phase extraction. Anal. Chim. Acta, 770: 68–74.
  • Bocchini, S., Frache, A., Camino, G., and Claes, M. (2007) Polyethylene thermal oxidative stabilisation in carbon nanotubes based composites. Eur. Polym. J., 43(8): 3222–3235.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.