89
Views
9
CrossRef citations to date
0
Altmetric
ARTICLES

Neutron bombardment of C60 and C70 fullerenes: A spectroscopic and calorimetric study

, &
Pages 547-554 | Received 10 Jun 2016, Accepted 19 Jun 2016, Published online: 01 Jul 2016

References

  • Nightingale R. E, (1962) Nuclear Graphite, Academic Press: New York, Chapter 12.
  • Simmons, J. H. W. (1965) Radiation Damage of Graphite, Pergamon Press: Oxford.
  • Ewels, C. P., Telling, R. H., El-Barbary, A. A., Heggie, M. I., and Briddon, P. R. (2003) Metastable Frenkel pair defect in graphite: Source of Wigner energy? Phys. Rev. Lett., 91: 025505.
  • Telling, R. H., Ewels, C. P., Ahlam, A., and Heggie, M. I. (2003) Wigner defects bridge the graphite gap. Nature Mater., 2: 333–337.
  • Hashimoto, A., Suenaga, K., Gloter, A., Urita, K., and Iijima, S. (2004) Direct evidence for atomic defects in graphene layers. Nature, 430: 870–873.
  • Telling, R. H., and Heggie, M. I. (2007) Radiation defects in graphite. Phil. Mag., 87: 4797–4846.
  • Yazyev, O. V., Tavernelli. I., Rothlisberger, U., and Helm, L. (2007) Early stages of radiation damage in graphite and carbon nanostructures: A first-principles molecular dynamics study. Phys. Rev. B, 75, 115418–115423.
  • Latham, C. D., Heggie, M. I., Alatalo, M., Öberg, S., and Briddon, P. R. (2013) The contribution made by lattice vacancies to the Wigner effect in radiation-damaged graphite. J. Phys. Condens. Matter., 25: 135403.
  • Freeman, H. M., Jones, A. N., Ward, M. B., Hage, F. S., Tzelepi, N., Ramasse, Q. M., and Brydson, R. M. D. (2016) On the nature of cracks and voids in nuclear graphite. Carbon, 103: 45–55.
  • (a) Banhart, F., Kotakoski, J., and Krasheninnikov, A. V. (2010) Structural 415 defects in graphene. ACS Nanot 5: 26–41.
  • (b) Ori, O., Cataldo, F., and Graovac, A. (2011) On topological modeling of 5j 7 structural defects drifting in graphene. In Carbon Bonding and Structures (pp. 43–55). Springer: The Netherland.
  • Ori, O., and Putz, M. V. (2014) Isomeric formation of 5| 8| 5 defects in graphenic systems. Fullerenes Nanot. Carbon Nanostruct. 22: 887–900.
  • Trevethan, T., Latham, C. D., Heggie, M. I., Briddon, P. R., and Rayson, M. J. (2014) Vacancy diffusion and coalescence in graphene directed by defect strain fields. Nanoscale, 6: 2978–2986.
  • Leyssale, J. M., and Vignoles, G. L. (2014) A large-scale molecular dynamics study of the divacancy defect in graphene. J. Phys. Chem. C, 118: 8200–8216.
  • Skowron, S. T., Lebedeva, I. V., Popov, A. M., and Bichoutskaia, E. (2015). Energetics of atomic scale structure changes in graphene. Chem. Soc. Rev., 44: 3143–3176.
  • Wadey, J. D., Markevich, A., Robertson, A., Warner, J., Kirkland, A., and Besley, E. (2016) Mechanisms of monovacancy diffusion in graphene. Chem. Phys. Lett., 648: 161–165.
  • Niwase, K., Nakamura, K., Shikama, T., and Tanabe, T. (1990) On the amorphization of neutron-irradiated graphite. J. Nucl. Mater., 170: 106–108.
  • Cataldo, F. (2000) A Raman study on radiation-damaged graphite by γ-rays. Carbon, 38(4):634–636.
  • Lasithiotakis, M., Marsden, B., Marrow, J., and Willets, A. (2008) Application of an independent parallel reactions model on the annealing kinetics to irradiated graphite waste. J. Nucl. Mater., 381: 83–91.
  • Lexa, D., and Dauke, M. (2009) Thermal and structural properties of low-fluence irradiated graphite. J. Nucl. Mater., 384: 236–244.
  • Cataldo, F., Ursini, O., Nasillo, G., Caponnetti, E., Carbone, M., Valentini, F., Palleschi, G., and Braun, T. (2013) Thermal properties, Raman spectroscopy and TEM images of neutron-bombarded graphite. Fullerenes Nanot. Carbon Nanostruct., 21: 634–643.
  • Cataldo, F. (2001) Effects of fillers radiation pre-treatments on their rubber absorption power and on the reinforcing properties of rubber compounds. Polym. Int., 50: 828–834.
  • Cataldo, F. (2001) Some implications of the radiation-treatment of graphite and carbon black. Fullerenes Nanot. Carbon Nanostruct., 9: 409–424.
  • Cataldo, F. (2001) Effects of γ-radiation treatment on the reinforcing properties of carbon black in rubber compound. Int. J. Polym. Mater., 50: 29–46.
  • Cataldo, F. (2001) A method for grafting natural rubber on the N375 carbon black surface. Recent Res. Develop. Mater. Sci., 2: 241–251.
  • Baccaro, S., Cataldo, F., Cecilia, A., Cemmi, A., Padella, F., and Santini, A. (2003) Interaction between reinforce carbon black and polymeric matrix for industrial applications. Nucl. Instrum. Meth. Phys. Res. Sect. B: Beam Interact. Mater. Atoms, 208: 191–194.
  • Cataldo, F., Abbati, G., Santini, A., and Padella, F. (2003) Evidences of rubber grafting on activated carbon surfaces containing fullerene‐like structures. Fullerenes Nanot. Carbon Nanostruct., 11: 395–408.
  • Cataldo, F. (2002) The impact of a fullerene-like concept in carbon black science. Carbon, 40: 157–162.
  • Primak, W., Fuchs, L. H., and Day, P. P. (1956) Radiation damage in diamond and silicon carbide. Phys. Rev., 103: 1184–1192.
  • Waldermann, F. C., Olivero, P., Nunn, J., Surmacz, K., Wang, Z. Y., Jaksch, D., and Greentree, A. D. (2007) Creating diamond color centers for quantum optical applications. Diamond Relat. Mater., 16: 1887–1895.
  • Cataldo, F., Angelini, G., Révay, Z., Osawa, E., and Braun, T. (2014) Wigner energy of nanodiamond bombarded with neutrons or irradiated with γ radiation. Fullerenes Nanot. Carbon Nanostruct., 22: 861–865.
  • Cataldo, F., Iglesias-Groth, S., Hafez, Y., and Angelini, G. (2014) Neutron bombardment of single wall carbon nanohorn (SWCNH): DSC determination of the stored Wigner–Szilard energy. J. Radioanal. Nucl. Chem., 299: 1955–1963.
  • Krasheninnikov, A. V., Nordlund, K., and Keinonen, J. (2002) Production of defects in supported carbon nanotubes under ion irradiation. Phys. Rev. B, 65: 165423.
  • Ritter, U., Scharff, P., Siegmund, C., Dmytrenko, O. P., Kulish, N. P., Prylutskyy, Y. I., and Poroshin, V. G. (2006) Radiation damage to multi-walled carbon nanotubes and their Raman vibrational modes. Carbon, 44: 2694–2700.
  • Cataldo, F. (2000) On the action of γ radiation on solid C60 and C70 fullerenes: A comparison with graphite irradiation. Fullerenes Nanot. Carbon Nanostruct., 8: 577–593.
  • Cataldo, F., Baratta, G. A., and Strazzulla, G. (2002) He+ ion bombardment of C60 fullerene: An FT-IR and Raman study. Fullerenes Nanot. Carbon Nanostruct., 10: 197–206.
  • Cataldo, F., Baratta, G. A., Ferini, G., and Strazzulla, G. (2003)He+ ion bombardment of C70 Fullerene: An FT‐IR and Raman study. Fullerenes Nanot. Carbon Nanostruct., 11: 191–199.
  • Strazzulla, G., Baratta, G., Brunetto, R., and Cataldo, F. (2005). Vibrational spectroscopy of ion irradiated carbon containing macromolecules. Macromol. Symp., 220: 165–175
  • Cataldo, F. (2000)Raman spectra of C60 fullerene photopolymers prepared in solution. Eur. Polym. J., 36: 653–656.
  • Yogo, A., Majima, T., and Itoh, A. (2002)Damage and polymerization of C60 films irradiated by fast light and heavy ions. Nucl. Instrum. Meth. Phys. Res. Sect. B: Beam Interact. Mater. Atoms, 193: 299–304.
  • Bajwa, N., Dharamvir, K., Jindal, V. K., Ingale, A., Avasthi, D. K., Kumar, R., and Tripathi, A. (2003) Swift heavy ion induced modification of C60 thin films. J. Appl. Phys., 94: 326–333.
  • Singhal, R., Kumar, A., Mishra, Y. K., Mohapatra, S., Pivin, J. C., and Avasthi, D. K. (2008) Swift heavy ion induced modifications of fullerene C70 thin films. Nucl. Instrum. Meth. Phys. Res. Sect. B: Beam Interact. Mater. Atoms, 266: 3257–3262.
  • Coulombeau, C., Jobic, H., Carlile, C. J., Bennington, S. M., Fabre, C., and Rassat, A. (1994). On the vibrational spectrum of C60 measured by neutron inelastic scattering. Fullerenes Nanot. Carbon Nanostruct., 2: 247–254.
  • Blaschko, O., Krexner, G., and Rom, W. (1996) Comparative investigation of elastic diffuse neutron scattering in C60 powder. Fullerenes Nanot. Carbon Nanostruct., 4: 297–302.
  • Braun, T., and Rausch, H. (1995) Endohedral incorporation of argon atoms into C60 by neutron irradiation. Chem. Phys. Lett., 237: 443–447.
  • Braun, T., and Rausch, H. (1998) Radioactive endohedralmetallofullerenes formed by prompt gamma-generated nuclear recoil implosion. Chem. Phys. Lett., 288: 179–182.
  • Braun, T. (Ed.). (2013). Nuclear and Radiation Chemical Approaches to Fullerene Science (Vol. 1). Springer Science& Business Media, Berlin.
  • Cami, J., Bernard-Salas, J., Peeters, E., and Malek, S. E. (2010). Detection of C60 and C70 in a young planetary nebula. Science, 329: 1180–1182.
  • Villaver, E., Acosta-Pulido, J. A., Manchado, A., Stanghellini, L., Shaw, R. A., and Cataldo, F. (2012). Infrared study of fullerene planetary nebulae. Astrophys J., 760: 107(16p).
  • Díaz-Luis, J. J., García-Hernández, D. A., Rao, N. K., Manchado, A., and Cataldo, F. (2015) A search for diffuse bands in fullerene planetary nebulae: Evidence of diffuse circumstellar bands. Astronom. Astrophys., 573: A97(14p).
  • Díaz-Luis, J. J., García-Hernández, D. A., Manchado, A., and Cataldo, F. (2016) A search for hydrogenated fullerenes in fullerene-containing planetary nebulae. Astronom.Astrophys. 589: A5(7p).
  • Cataldo, F., and Iglesias-Groth, S. (Eds.). (2010). Fullerenes: The Hydrogenated Fullerenes. Springer Science, Berlin.
  • Cataldo, F., Strazzulla, G., and Iglesias-Groth, S. (2009) Stability of C60 and C70 fullerenes toward corpuscular and γ radiation. Mon. Not. Roy. Astronom. Soc., 394: 615–623.
  • Cataldo, F., and Iglesias-Groth, S. (2009) On the action of UV photons on hydrogenated fulleranes C60H36 and C60D36. Mon. Not. Roy. Astronom. Soc., 400: 291–298.
  • Iglesias-Groth, S., Hafez, Y., Angelini, G., and Cataldo, F. (2013) γ Radiolysis of C60 fullerene in water and water/ammonia mixtures: Relevance of fullerene fate in ices of interstellar medium. J. Radioanal. Nucl. Chem., 298: 1073–1083.
  • Cataldo, F., and Iglesias-Groth, S. (2016) Radiation chemical aspects of the origins of life. J. Radioanal. Nucl. Chem., published online DOI:10.1007/s10967-016-4914-2
  • Braun, T., Thege, I. K., Rausch, H., Süvegh, K., and Vértes, A. (1995) Dose effect in neutron-irradiated C60: A positron lifetime spectroscopy and DSC study. Chem. Phys. Lett., 238: 290–294.
  • Braun, T., Rausch, H., and Mink, J. (2005) Raman spectroscopy of the effect of reactor neutron irradiation on the structure of polycrystalline C60. Carbon, 43: 870–873.
  • Cataldo, F., Hafez, Y., and Iglesias-Groth, S. (2013) On the molar extinction coefficients of the electronic absorption spectra of C60 and C70 fullerenes radical cation. Eur. Chem. Bull., 2: 1013–1018.
  • Rao, A. M., Zhou, P., Wang, K. A., Hager, G. T., Holden, J. M., Wang, Y., and Cornett, D. S. (1993) Photoinduced polymerization of solid C60 films. Science, 259: 955–957.
  • Cataldo, F. (2000) On the action of ultraviolet light on C70 fullerene. Fullerenes Nanot. Carbon Nanostruct., 8: 39–45.
  • Taylor, R. (1999) Lecture Notes on Fullerene Chemistry. A Handbook for Chemists. Imperial College Press, London, Chap. 12.
  • Dresselhaus, M. S., Dresselhaus, G., and Eklund, P. C. (1996) Science of Fullerenes and Carbon Nanotubes: Their Properties and Applications. Academic Press, New York.
  • Cataldo, F., Putz, M. V., Ursini, O., Angelini, G., Garcia-Hernandez, A., and Manchado, A. (2015)A new route to graphene starting from heavily ozonized fullerenes: Part 3: An Electron Spin Resonance study. Fullerenes Nanot. Carbon Nanostruct., 24: 195–201.
  • Cataldo, F., Putz, M. V., Ursini, O., and Angelini, G. (2016). Surface mod- 580 ification of activated carbon fabric with ozone Part 3: Thermochemical aspects and Electron Spin Resonance. Fullerenes Nanot. Carbon Nanostruct. 24: 406–413.
  • Cataldo, F. (2002) An investigation on the optical properties of carbon black, fullerite, and other carbonaceous materials in relation to the spectrum of interstellar extinction of light. Fullerenes Nanot. Carbon Nanostruct., 10: 155–170.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.