1,412
Views
48
CrossRef citations to date
0
Altmetric
ARTICLES

Mechanical properties of graphene oxide: A molecular dynamics study

&
Pages 594-603 | Received 08 May 2016, Accepted 28 Jun 2016, Published online: 22 Jul 2016

References

  • Delhaes, P. (2001) Graphite and Precursors, CRC Press.
  • Huang, Y., Wu, J., and Hwang, K. C. (2006) Thickness of graphene and single-wall carbon nanotubes. Phys. Rev. B, 74: 245413.
  • Namilae, S., Chandra, N., and Shet, C. (2004) Mechanical behavior of functionalized nanotubes. Chem. Phys. Lett., 387: 247–252.
  • Chen, S., Wu, Q., Mishra, C., Kang, J., Zhang, H., Cho, K., Cai, W., Balandin, A. A., and Ruoff, R. S. (2012) Thermal conductivity of isotopically modified graphene. Nature Mater., 11: 203–207.
  • Zhao, N. H. (2010) Temperature and strain-rate dependent fracture strength of graphene. J. Appl. Phys., 108: 064321.
  • Kheirkhah, A. H., Iranizad, E. S., Raeisi, M., and Rajabpour, A. (2014) Mechanical properties of hydrogen functionalized graphene under shear deformation: A molecular dynamics study. Solid State Comm., 177: 98–102.
  • Pei, Q. X., Zhang, Y. W., and Shenoy, V. B. (2010) A molecular dynamics study of the mechanical properties of hydrogen functionalized graphene. Carbon, 48: 898–904.
  • Wang, M. C., Yan, C., Ma, L., Hu, N., and Chen, M. W. (2012) Effect of defects on fracture strength of graphene sheets. Comput. Mater. Sci., 54: 236–239.
  • Uberuaga, B. P., Stuart, S. J., Windl, W., Masquelier, M. P., and Voter, A. F. (2012) Fullerene and graphene formation from carbon nanotube fragments. Comput. Theo. Chem., 987: 115–121.
  • Mortazavi, B., and Ahzi, S. (2013) Thermal conductivity and tensile response of defective graphene: A molecular dynamics study. Carbon, 63: 460–470.
  • Denis, P. A., Huelmo, C. P., and Iribarne, F. (2014) Theoretical characterization of sulfur and nitrogen dual-doped graphene. Comput. Theo. Chem., 1049: 13–19.
  • Yadav, M., Rhee, K. Y., and Park, S. J. (2014) Synthesis and characterization of graphene oxide/ carboxy-methylcellulose/alginate composite blend films. Carbohydr. Polym., 110: 18–25.
  • Ansari, R., Motevalli, B., Montazeri, A., and Ajori, S. (2011) Fracture analysis of monolayer graphene sheets with double vacancy defects via MD simulation. Solid State Comm., 151: 1141–1146.
  • Ansari, R., Shahabodini, A., and Rouhi H. (2015) A nonlocal plate model incorporating interatomic potentials for vibrations of graphene with arbitrary edge conditions. Curr. Appl. Phys., 15: 1062–1069.
  • Ni, Z., Bu, H., Zou, M., Yi, H., Bi, K., and Chen, Y. (2010) Anisotropic mechanical properties of graphene sheets from molecular dynamics. Phys. B: Cond. Matter, 405: 1301–1306.
  • Lee, C., Wei, X., Kysar, J. W., and Hone, J. (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 321: 385–388.
  • Kvashnin, A. G., Sorokin, P. B., and Kvashnin, D. G. (2010) The theoretical study of mechanical properties of graphene membranes. Fuller. Nanotub. Carbon Nanostruct., 18: 497–500.
  • Shokrieh, M. M., and Rafiee, R. (2010) Prediction of Young's modulus of graphene sheets and carbon nanotubes using nanoscale continuum mechanics approach. Mater. Des., 31: 790–795.
  • Liu, F., Ming, P., and Li, J. (2007) Ab initio calculation of ideal strength and phonon instability of graphene under tension. Phys. Rev. B, 76: 064120.
  • Yanovsky, Y. G., Nikitina, E. A., Karnet, Y. N., and Nikitin, S. M. (2009) Quantum mechanics study of the mechanism of deformation and fracture of graphene. Phys. Mesomech., 12: 254–262.
  • Sakhaeepour, A. (2009) Elastic properties of single-layered graphene sheet. Solid State Comm., 149: 91–95.
  • Singh, V., Joung, D., Zhai, L., Das, S., Khondaker, S. I., and Seal, S. (2011) Graphene based materials: Past, present and future. Prog. Mater. Sci., 56: 1178–1271.
  • Brodie, B. C. (1859) On the atomic weight of graphite. Philos. Trans. Royal Soc. London, 149: 249–259.
  • Romanchuk, A. Y., Slesarev, A. S., Kalmykov, S. N., Kosynkin, D. V., and Tour, J. M. (2013) Graphene oxide for effective radionuclide remova. Phys. Chem. Chem. Phys., 15: 2321–2327.
  • Forati, T., Atai, M., Rashidi, A. M., Imani, M., and Behnamghader, A. (2013) Physical and mechanical properties of graphene oxide/polyethersulfone nanocomposites. Polym. Adv. Tech., 25: 322–328.
  • Kang, S. H., Fang, T. H., Hong, Z. H., and Chuang, C. H. (2013) Mechanical properties of free-standing graphene oxide. Diamond Relat. Mater., 38: 73–38.
  • Zhang, J., Zou, H., Qing, Q., Yang, Y., Li, Q., Liu, Z., Guo, X., and Du, Z. (2003) Effect of chemical oxidation on the structure of single-walled carbon nanotubes. J. Phys. Chem. B, 107: 3712–3718.
  • Dai, J., and Yuan, J. (2010) Adsorption of molecular oxygen on doped graphene: Atomic, electronic, and magnetic properties. Phys. Rev. B, 81: 165414.
  • Ansari, R., Mirnezhad, M., and Sadeghi, F. (2015) Elastic properties of chiral carbon nanotubes under oxygen adsorption. Physica E: Low-dim. Sys. Nanostruct., 70: 129–134.
  • Yan, H. J., Xu, B., Shi, S. Q., and Ouyang, C. Y. (2012) First-principles study of the oxygen adsorption and dissociation on graphene and nitrogen doped graphene for Li-air batteries. J. Appl. Phys., 112: 104316.
  • Ansari, R., Ajori, S., and Rouhi, S. (2015) Structural and elastic properties and stability characteristics of oxygenated carbon nanotubes under physical adsorption of polymers. Appl. Surface Sci., 332: 640–647.
  • Ansari, R., Ajori, S., and Ameri, A. (2014) Elastic and structural properties and buckling behavior of single-walled carbon nanotubes under chemical adsorption of atomic oxygen and hydroxyl. Chem. Phys. Lett., 616: 120–125.
  • Mehmood, F., Pachter, R., Lu, W., and Boeckl, J. J. (2013) Adsorption and diffusion of oxygen on single-layer graphene with topological defects. J. Phys. Chem. C, 117: 10366–10374.
  • Mirnezhad, M., Ansari, R., Seifi, M., Rouhi, H., and Faghihnasiri, M. (2012) Mechanical properties of graphene under molecular hydrogen physisorption: An ab initio study. Solid State Comm., 152: 842–845.
  • Ansari, R., Mirnezhad, M., and Rouhi, H. (2015) Mechanical properties of fully hydrogenated graphene sheets. Solid State Comm., 201: 1–4.
  • Lu, G., Tadmor, E. B., and Kaxiras, E. (2006) From electrons to finite elements: A concurrent multi-scale approach. Phys. Rev. B, 73: 024108.
  • Khoei, A. R., and Ghahremani, P. (2012) Temperature-dependent multi-scale modeling of surface effects in nano-materials. Mech. Mat., 46: 94–112.
  • Khoei, A. R., DorMohammadi, H., and Aramoon, A. (2013) Multi-scale modeling of edge effect on band gap offset in polygonal cross-section Si nanowires. Comput. Mat. Sci., 79: 262–275.
  • Yang, Q., Biyikli, E., and To, A. C. (2013) Multiresolution molecular mechanics: Statics. Comp. Meth. Appl. Mech. Eng., 258: 26–38.
  • Khoei, A. R., Ghahremani, P., and DorMohammadi, H. (2014) Multi-scale modeling of surface effects in nano-materials with temperature-related Cauchy-Born hypothesis via the modified boundary Cauchy-Born model. Int. J. Numer. Meth. Eng., 97: 79–110.
  • Khoei, A. R., Jahanbakhshi, F., and Aramoon, A. (2015) A concurrent multi-scale technique in modeling heterogeneous FCC nano–crystalline structures. Mech. Mat., 83: 40–65.
  • Dewar, M. J. S., Zoebisch, E. G., Healy, E. F., and Stewart, J. J. P. (1985) Development and use of quantum mechanical molecular models. 76. AM1: a new general purpose quantum mechanical molecular model. J. Am. Chem. Soc., 107: 3902–3909.
  • Plimpton, S. (1995) Fast parallel algorithms for short-range molecular dynamics. J. Comp. Phys., 117: 1–19.
  • Lindsay, L., and Broido D. (2010) Erratum: Optimized Tersoff and Brenner empirical potential parameters for lattice dynamics and phonon thermal transport in carbon nanotubes and graphene. Phys. Rev. B, 81: 205441.
  • Tersoff, J. (1988) New empirical approach for the structure and energy of covalent systems. Phys. Rev. B, 37: 6991.
  • Tersoff, J. (1988) Empirical interatomic potential for carbon, with applications to amorphous carbon. Phys. Rev. Lett., 61: 2879–2882.
  • Stuart, S. J., Tutein, A. B., and Harrison J. A. (2000) A reactive potential for hydrocarbons with intermolecular intractions. J. Chem. Phys., 112: 6472–6486.
  • MacKerell, A. D., Bashford, J. D., Bellott, M., Dunbrack, R. L., and Evanseck, J. J. D. (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. J. Phys. Chem. B, 102: 3586–3616.
  • Ansari, R., Ajori, S., and Motevalli, B. (2012) Mechanical properties of defective single-layered graphene sheets via molecular dynamics simulation. Superlatt. Microstruct., 51: 274–289.
  • Khoei, A. R., Ban, E., Banihashemi, P., and Qomi, M. J. A. (2011) Effects of temperature and torsion speed on torsional properties of single-walled carbon nanotubes. Mater. Sci. Eng. C, 31: 452–457.
  • Griebel, M., Knapek, S., and Zumbusch, G. (2007) Numerical Simulation in Molecular Dynamics Numerics, Algorithms, Parallelization, Applications, Springer.
  • Tsai, D. H. (1979) The virial theorem and stress calculation in molecular dynamics. J. Chem. Phys., 70: 1375–1382.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.