508
Views
13
CrossRef citations to date
0
Altmetric
Original Articles

Investigation of irradiated graphene oxide/ultra-high-molecular-weight polyethylene nanocomposites by ESR and FTIR spectroscopy

, , , &
Pages 698-704 | Received 03 Aug 2016, Accepted 23 Aug 2016, Published online: 09 Sep 2016

References

  • Steven M., Kurtz (2016) The origins of UHMWPE in total hip arthroplasty. In UHMWPE Biomaterials Handbook, 3rd ed., William Andrew Publishing: Oxford.
  • Harris, W. H. (2001) Wear and periprosthetic osteolysis: The problem. Clin. Orthop. Relat. Res., 393: 66–70.
  • Fu, J., Shen, J., Gao, G., Xu, Y., Hou, R., Cong, Y., and Cheng, Y. (2013) Natural polyphenol-stabilised highly crosslinked UHMWPE with high mechanical properties and low wear for joint implants. J. Mater. Chem. B, 1: 4727–4735.
  • Harris, W. H. (1995) The problem is osteolysis. Clin. Orthop. Relat. Res., 311: 46–53.
  • Puértolas, J., and Kurtz, S. (2014) Evaluation of carbon nanotubes and graphene as reinforcements for UHMWPE-based composites in arthroplastic applications: A review. J. Mech. Behav. Biomed. Mater., 39: 129–145.
  • Liu, Y., Yu, D., Zeng, C., Miao, Z., and Dai, L. (2010) Biocompatible graphene oxide-based glucose biosensors. Langmuir, 26: 6158–6160.
  • Park, S., Lee, K.-S., Bozoklu, G., Cai, W., Nguyen, S. T., and Ruoff, R. S. (2008) Graphene oxide papers modified by divalent ions—enhancing mechanical properties via chemical cross-linking. ACS Nano, 2: 572–578.
  • An, Y., Tai, Z., Qi, Y., Yan, X., Liu, B., Xue, Q., and Pei, J. (2014) Friction and wear properties of graphene oxide/ultra- high molecular weight polyethylene composites under the lubrication of deionized water and normal saline solution. J. Appl. Polym. Sci., 131: 39640(1)–39640(11).
  • Chen, Y. F., Qi, Y. Y., Tai, Z. X., Yan, X. B., Zhu, F. L., and Xue, Q. J. (2012) Preparation, mechanical properties and biocompatibility of graphene oxide/ultrahigh molecular weight polyethylene composites. Eur. Polym. J., 48: 1026–1033.
  • Golchin, A., Wikner, A., and Emami, N. (2016) An investigation into tribological behaviour of multi-walled carbon nanotube/graphene oxide reinforced uhmwpe in water lubricated contacts. Tribol. Int., 95: 156–161.
  • Premnath, V., Harris, W. H., Jasty, M., and Merrill, E. W. (1996) Gamma sterilization of uhmwpe articular implants: An analysis of the oxidation problem. Biomaterials, 17: 1741–1753.
  • Oral, E., Malhi, A. S., and Muratoglu, O. K. (2006) Mechanisms of decrease in fatigue crack propagation resistance in irradiated and melted uhmwpe. Biomaterials, 27: 917–925.
  • Gomoll, A., Wanich, T., and Bellare, A. (2002) J‐integral fracture toughness and tearing modulus measurement of radiation cross‐linked uhmwpe. J. Orth. Res., 20: 1152–1156.
  • Baker, D. A., Bellare, A., and Pruitt, L. (2003) The effects of degree of crosslinking on the fatigue crack initiation and propagation resistance of orthopedic-grade polyethylene. J. Biomed. Mater. Res. A, 66a: 146–154.
  • Qiu, Y., Wang, Z., Owens, A. C., Kulaots, I., Chen, Y., Kane, A. B., and Hurt, R. H. (2014) Antioxidant chemistry of graphene-based materials and its role in oxidation protection technology. Nanoscale, 6: 11744–11755.
  • Goncalves, G., Cruz, S. M. A., Ramalho, A., Gracio, J., and Marques, P. A. A. P. (2012) Graphene oxide versus functionalized carbon nanotubes as a reinforcing agent in a pmma/ha bone cement. Nanoscale, 4: 2937–2945.
  • Qiao, Y., Zhang, P., Wang, C., Ma, L., and Su, M. (2014) Reducing x-ray induced oxidative damages in fibroblasts with graphene oxide. Nanomaterials, 4: 522–534.
  • Hummers Jr, W. S., and Offeman, R. E. (1958) Preparation of graphitic oxide. J. Am. Chem. Soc., 80: 1339–1339.
  • Suñer, S., Joffe, R., Tipper, J. L., and Emami, N. (2015) Ultra high molecular weight polyethylene/graphene oxide nanocomposites: Thermal, mechanical and wettability characterisation. Compos. Pt. B-Eng., 78: 185–191.
  • Pang, W. C., Ni, Z. F., Chen, G. M., Huang, G. D., Huang, H. D., and Zhao, Y. W. (2015) Mechanical and thermal properties of graphene oxide/ultrahigh molecular weight polyethylene nanocomposites. RSC Advances, 5: 63063–63072.
  • Wang, H. L., Xu, L., Hu, J. T., Wang, M. H., and Wu, G. Z. (2015) Radiation-induced oxidation of ultra-high molecular weight polyethylene (uhmwpe) powder by gamma rays and electron beams: A clear dependence of dose rate. Radiat. Phys. Chem., 115: 88–96.
  • Steven M., Kurtz (2009) Esr insights into macroradicals in uhmwpe. In UHMWPE Biomaterials Handbook, 2nd ed., Academic Press: Boston.
  • Panich, A. M., Shames, A. I., Aleksenskii, A. E., and Dideikin, A. (2012) Magnetic resonance evidence of manganese–graphene complexes in reduced graphene oxide. Solid State Commun., 152: 466–468.
  • Yang, L., Zhang, R., Liu, B., Wang, J., Wang, S., Han, M. Y., and Zhang, Z. (2014) Π‐conjugated carbon radicals at graphene oxide to initiate ultrastrong chemiluminescence. Angew. Chem. Int. Ed., 53: 10109–10113.
  • Hou, X. L., Li, J. L., Drew, S. C., Tang, B., Sun, L., and Wang, X. G. (2013) Tuning radical species in graphene oxide in aqueous solution by photoirradiation. J. Phys. Chem. C, 117: 6788–6793.
  • Pham, C. V., Krueger, M., Eck, M., Weber, S., and Erdem, E. (2014) Comparative electron paramagnetic resonance investigation of reduced graphene oxide and carbon nanotubes with different chemical functionalities for quantum dot attachment. Appl. Phys. Lett., 104:132102(1)-132102(5).
  • Su, C., Acik, M., Takai, K., Lu, J., Hao, S.-J., Zheng, Y., Wu, P., Bao, Q., Enoki, T., and Chabal, Y. J. (2012) Probing the catalytic activity of porous graphene oxide and the origin of this behaviour. Nature Commun., 3: 1298(1)–1298(9).
  • Hou, X.-L., Li, J.-L., Drew, S. C., Tang, B., Sun, L., and Wang, X.-G. (2013) Tuning radical species in graphene oxide in aqueous solution by photoirradiation. J. Phys. Chem. C, 117: 6788–6793.
  • Zhang, Y. Y., Chen, L., Xu, Z. W., Li, Y. L., Zhou, B. M., Shan, M. J., Wang, Z., Guo, Q. W., and Qian, X. M. (2012) Preparing graphene with notched edges and nanopore defects by gamma-ray etching of graphite oxide. Mater. Lett., 89: 226–228.
  • Kasser, M. J., Silverman, J., and Al-Sheikhly, M. (2010) Epr simulation of polyenyl radicals in ultrahigh molecular weight polyethylene. Macromolecules, 43: 8862–8867.
  • Stathi, P., Gournis, D., Deligiannakis, Y., and Rudolf, P. (2015) Stabilization of phenolic radicals on graphene oxide: An XPS and EPR study. Langmuir, 31: 10508–10516.
  • Haubner, K., Murawski, J., Olk, P., Eng, L. M., Ziegler, C., Adolphi, B., and Jaehne, E. (2010) The route to functional graphene oxide. Chem. Phys. Chem., 11: 2131–2139.
  • Brunella, V., Bracco, P., Carpentieri, I., Paganini, M., Zanetti, M., and Costa, L. (2007) Lifetime of alkyl macroradicals in irradiated ultra-high molecular weight polyethylene. Polym. Degrad. Stab., 92: 1498–1503.
  • Rincon-Rubio, L., Fayolle, B., Audouin, L., and Verdu, J. (2001) A general solution of the closed-loop kinetic scheme for the thermal oxidation of polypropylene. Polym. Degrad. Stab., 74: 177–188.
  • Martinez-Morlanes, M. J., Castell, P., Alonso, P. J., Martinez, M. T., and Puertolas, J. A. (2012) Multi-walled carbon nanotubes acting as free radical scavengers in gamma-irradiated ultrahigh molecular weight polyethylene composites. Carbon, 50: 2442–2452.
  • Castell, P., Martinez-Morlanes, M. J., Alonso, P. J., Martinez, M. T., and Puertolas, J. A. (2013) A novel approach to the chemical stabilization of gamma-irradiated ultrahigh molecular weight polyethylene using arc-discharge multi-walled carbon nanotubes. J. Mater. Sci., 48: 6549–6557.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.