318
Views
19
CrossRef citations to date
0
Altmetric
Original Articles

Electrochemical determination of hydrazine based on polydopamine-reduced graphene oxide nanocomposite

&
Pages 29-33 | Received 27 Sep 2016, Accepted 12 Oct 2016, Published online: 27 Oct 2016

References

  • Garrod, S., Bollard, M. E., Nicholls, A. W., Connor, S. C., Connelly, J., Nicholson, J. K., and Holmes, E. (2005) Integrated metabonomic analysis of the multiorgan effects of hydrazine toxicity in the rat. Chem. Res. Toxicology, 18: 115–122.
  • Vernot, E., MacEwen, J., Bruner, R., Haun, C., Kinkead, E., Prentice, D., Hall, A., Schmidt, R., Eason, R., and Hubbard, G. (1985) Long-term inhalation toxicity of hydrazine. Toxicol. Sci., 5: 1050–1064.
  • Yamamoto, K., and Kawanishi, S. (1991) Site-specific DNA damage induced by hydrazine in the presence of manganese and copper ions. The role of hydroxyl radical and hydrogen atom. J. Biol. Chem., 266: 1509–1515.
  • Amlathe, S., and Gupta, V. (1988) Spectrophotometric determination of trace amounts of hydrazine in polluted water. Analyst, 113: 1481–1483.
  • Ensafi, A. A., and Rezaei, B. (1998) Flow injection determination of hydrazine with fluorimetric detection. Talanta, 47: 645–649.
  • Gojon, C., Duréault, B., Hovnanian, N., and Guizard, C. (1999) Optical chemical hydrazine sensor from hybrid organic-inorganic materials. J. Sol-Gel Sci. Technol., 14: 163–173.
  • George, M., Nagaraja, K., and Balasubramanian, N. (2007) Spectrophotometric determination of hydrazine. Anal. Lett., 40: 2597–2605.
  • Ganesh, S., Khan, F., Ahmed, M., and Pandey, S. (2011) Potentiometric determination of free acidity in presence of hydrolysable ions and a sequential determination of hydrazine. Talanta, 85: 958–963.
  • Mori, M., Tanaka, K., Xu, Q., Ikedo, M., Taoda, H., and Hu, W. (2004) Highly sensitive determination of hydrazine ion by ion-exclusion chromatography with ion-exchange enhancement of conductivity detection. J. Chromatogr. A, 1039: 135–139.
  • Huang, J., Zhang, C., and Zhang, Z. (1999) Flow injection chemiluminescence determination of isoniazid with electrogenerated hypochlorite. Fresenius J. Anal. Chem., 363: 126–128.
  • Siangproh, W., Chailapakul, O., Laocharoensuk, R., and Wang, J. (2005) Microchip capillary electrophoresis/electrochemical detection of hydrazine compounds at a cobalt phthalocyanine modified electrochemical detector. Talanta, 67: 903–907.
  • Golsheikh, A. M., Huang, N. M., Lim, H. N., Zakaria, R., and Yin, C.-Y. (2013) One-step electrodeposition synthesis of silver-nanoparticle-decorated graphene on indium-tin-oxide for enzymeless hydrogen peroxide detection. Carbon, 62: 405–412.
  • Amiri-Aref, M., Raoof, J. B., and Ojani, R. (2014) A highly sensitive electrochemical sensor for simultaneous voltammetric determination of noradrenaline, acetaminophen, xanthine and caffeine based on a flavonoid nanostructured modified glassy carbon electrode. Sensors Actuators B: Chem., 192: 634–641.
  • Liu, J., Sun, S., Liu, C., and Wei, S. (2011) An amperometric glucose biosensor based on a screen-printed electrode and Os-complex mediator for flow injection analysis. Measurement, 44: 1878–1883.
  • Molaakbari, E., Mostafavi, A., and Beitollahi, H. (2015) Simultaneous electrochemical determination of dopamine, melatonin, methionine and caffeine. Sensors Actuators B: Chem., 208: 195–203.
  • Gupta, V. K., Prasad, R., and Kumar, A. (2003) Preparation of ethambutol–copper (II) complex and fabrication of PVC based membrane potentiometric sensor for copper. Talanta, 60: 149–160.
  • Gupta, V. K., Jain, S., and Chandra, S. (2003) Chemical sensor for lanthanum (III) determination using aza-crown as ionophore in poly (vinyl chloride) matrix. Anal. Chim. Acta., 486: 199–207.
  • Jain, R., Gupta, V. K., Jadon, N., and Radhapyari, K. (2010) Voltammetric determination of cefixime in pharmaceuticals and biological fluids. Anal. Biochem., 407: 79–88.
  • Ali, T. A., Mohamed, G. G., and Farag, A. H. (2015) Electroanalytical studies on Fe (III) ion-selective sensors based on 2-methyl-6-(4-methylenecyclohex-2-en-1-yl) hept-2-en-4-one ionophore. Int. J. Electrochem. Sci, 10: 564–578.
  • Yilong, Z., Dean, Z., and Daoliang, L. (2015) Electrochemical and other methods for detection and determination of dissolved nitrite: a review. Int. J. Electrochem. Sci, 10: 1144–1168.
  • Xie, R., Gu, Z., Yao, Y., Xu, H., Deng, K., and Liu, Y. (2015) Electrochemical study on corrosion behaviors of P110 casing steel in a carbon dioxide-saturated oilfield formation water. Int. J. Electrochem. Sc., 10: 5756–5769.
  • Javed, S.I., and Hussain, Z. (2015) Covalently functionalized graphene oxide–characterization and its electrochemical performance. Int. J. Electrochem. Sc., 10: 9475–9487.
  • Dumitru, A., Mamlouk, M., and Scott, K. (2014) Effect of different chemical modification of carbon nanotubes for the oxygen reduction reaction in alkaline media. Electrochim. Acta, 135: 428–438.
  • Navaee, A., Salimi, A., and Teymourian, H. (2012) Graphene nanosheets modified glassy carbon electrode for simultaneous detection of heroine, morphine and noscapine. Biosens. Bioelectron., 31: 205–211.
  • Molaakbari, E., Mostafavi, A., and Beitollahi, H. (2014) First electrochemical report for simultaneous determination of norepinephrine, tyrosine and nicotine using a nanostructure based sensor. Electroanalysis, 26: 2252–2260.
  • Molaakbari, E., Mostafavi, A., Beitollahi, H., and Alizadeh, R. (2014) Synthesis of ZnO nanorods and their application in the construction of a nanostructure-based electrochemical sensor for determination of levodopa in the presence of carbidopa. Analyst, 139: 4356–4364.
  • Oliveira, P. R., Lamy-Mendes, A. C., Rezende, E. I. P., Mangrich, A. S., Junior, L. H. M., and Bergamini, M. F. (2015) Electrochemical determination of copper ions in spirit drinks using carbon paste electrode modified with biochar. Food Chem., 171: 426–431.
  • Guascito, M. R., Chirizzi, D., Picca, R. A., Mazzotta, E., and Malitesta, C. (2011) Ag nanoparticles capped by a nontoxic polymer: Electrochemical and spectroscopic characterization of a novel nanomaterial for glucose detection. Mater. Sci. Eng.: C, 31: 606–611.
  • Lee, H., Dellatore, S. M., Miller, W. M., and Messersmith, P. B. (2007) Mussel-inspired surface chemistry for multifunctional coatings. Science, 318: 426–430.
  • Zheng, L., Xiong, L., Li, Y., Xu, J., Kang, X., Zou, Z., Yang, S., and Xia, J. (2013) Facile preparation of polydopamine-reduced graphene oxide nanocomposite and its electrochemical application in simultaneous determination of hydroquinone and catechol. Sensors Actuators B: Chem., 177: 344–349.
  • Zangmeister, R. A., Morris, T. A., and Tarlov, M. J. (2013) Characterization of polydopamine thin films deposited at short times by autoxidation of dopamine. Langmuir, 29: 8619–8628.
  • Zhou, Y., Bao, Q., Tang, L. A. L., Zhong, Y., and Loh, K. P. (2009) Hydrothermal dehydration for the “green” reduction of exfoliated graphene oxide to graphene and demonstration of tunable optical limiting properties. Chem. Mater., 21: 2950–2956.
  • Wang, M. Y., Shen, T., Wang, M., Zhang, D., and Chen, J. (2013) One-pot green synthesis of Ag nanoparticles-decorated reduced graphene oxide for efficient nonenzymatic H2O 2 biosensor. Mater. Lett., 107: 311–314.
  • Mazloum-Ardakani, M., Khoshroo, A., and Hosseinzadeh, L. (2015) Simultaneous determination of hydrazine and hydroxylamine based on fullerene-functionalized carbon nanotubes/ionic liquid nanocomposite. Sensors Actuators B Chem., 214: 132–137.
  • Mohammadi, S. Z., Beitollahi, H., and Bani, A. E. (2015) Electrochemical determination of hydrazine using a ZrO2 nanoparticles-modified carbon paste electrode. Environ. Monit. Assess., 187: 1–10.
  • Siangproh, W., and Chailapakul, O. (2005) Microchip capillary electrophoresis/electrochemical detection of hydrazine compounds at a cobalt phthalocyanine modified electrochemical detector. Talanta, 67: 903–907.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.