154
Views
11
CrossRef citations to date
0
Altmetric
Original Articles

Neutron bombardment of boron carbide B12C3: A FT-IR, calorimetric (DSC) and ESR study

ORCID Icon, &
Pages 371-378 | Received 01 Mar 2017, Accepted 05 Mar 2017, Published online: 08 Jun 2017

References

  • ( a) Greenwood, N. N., and Earnshaw, A. (2012) Chemistry of the Elements, 2nd ed., Elsevier: Amsterdam, p. 149. ( b) Morosin, B., Kwei, G. H., Lawson, A. C., Aselage, T. L., and Emin, D. (1995) Neutron powder diffraction refinement of boron carbides nature of intericosahedral chains. J. Alloys Comp., 226: 121–125. ( c) Aselage, T. L., Van Deusen, S. B., and Morosin, B. (1990) Solution growth, structure and composition of boron carbide crystals. J. Less Comm. Met., 166: 29–44. ( d) Tallant, D. R., Aselage, T.L., Campbell, A. N., and Emin, D. (1988) Boron carbides: Evidence for molecular level disorder. J. Non-Cryst. Solids, 106: 370–373. ( e) Duncan, T. M. (1984) The distribution of carbon in boron carbide: A 13C nuclear magnetic resonance study. J. Amer. Chem. Soc., 106: 2270–2275. ( f) Will, G., and Kossobutzki, K. H. (1976) An X-ray structure analysis of boron carbide, B13C2. J. Less Common Met., 44: 87–97.
  • ( a) Shirai, K., Sakuma, K., and Uemura, N. (2014) Theoretical study of the structure of boron carbide B13C2. Phys. Rev. B, 90: 064109. ( b) Werheit, H., and Kuhlmann, U. (2012) Is the established structure of α-rhombohedral boron correct? Comparative study of IR-active phonons with B6O, B4.3C and β-rhombohedral boron. J. Phys. Condens. Matter, 24: 305401. ( c) Balakrishnarajan, M. M., Pancharatna, P. D., and Hoffmann, R. (2007) Structure and bonding in boron carbide: The invincibility of imperfections. New J. Chem., 31: 473–485. ( d) Vast, N., Lazzari, R., Besson, J. M., Baroni, S., and Dal Corso, A. (2000) Atomic structure and vibrational properties of icosahedral α-boron and B4C boron carbide. Computat. Mater. Sci., 17: 127–132.
  • ( a) Werheit, H. (2016) Boron carbide: Consistency of components, lattice parameters, fine structure and chemical composition makes the complex structure reasonable. Solid State Sci., 60:45–54. ( b) Domnich, V., Reynaud, S., Haber, R. A., and Chhowalla, M. (2011) Boron carbide: structure, properties, and stability under stress. J. Amer. Ceramic Soc., 94: 3605–3628. ( c) Suri, A. K., Subramanian, C., Sonber, J. K., and Murthy, T. C. (2010) Synthesis and consolidation of boron carbide: a review. Internat. Mater. Rev., 55: 4–40. ( d) Alan W. Weimer (1997) Carbide, Nitride and Boride Materials Synthesis and Processing. Chapman & Hall: London. ( e) Thévenot, F. (1990) Boron carbide: a comprehensive review. J. Eur. Ceramic Soc., 6: 205–225.
  • Liu, J., Wen, S., Hou, Y., Zuo, F., Beran, G. J., Feng, P. (2013) Boron carbides as efficient, metal-free, visible-light-responsive photocatalysts. Angew. Chem. Int. Ed., 52: 3341–3245.
  • Haffner, J. W. (1967) Radiation and Shielding in Space. Academic Press: New York.
  • Soloway, A. H., Tjarks, W., Barnum, B. A., Rong, F. G., Barth, R. F., Codogni, I. M., and Wilson, J. G. (1998) The chemistry of neutron capture therapy. Chem. Rev., 98: 1515–1562.
  • ( a) Kipcak, A. S., Gurses, P., Derun, E. M., Tugrul, N., and Piskin, S. (2013) Characterization of boron carbide particles and its shielding behavior against neutron radiation. Energy Conv. Managem., 72: 39–44. ( b) Donomae, T., and Itoh, M. (2011) Retention and release of tritium in B4C irradiated as control rod of fast breeder reactor. J. Nucl. Sci. Technol., 48: 826–833. ( c) Morohashi, Y., Maruyama, T., Donomae, T., Tachi, Y., Onose, S. (2008) Neutron irradiation effect on isotopically tailored 11B4C. J. Nucl. Sci. Technol., 45: 867–872. ( d) Simeone, D., Mallet, C., Dubuisson, P., Baldinozzi, G., Gervais, C., and Maquet, J. (2000) Study of boron carbide evolution under neutron irradiation by Raman spectroscopy. J. Nucl. Mater., 277: 1–10. ( e) Simeone, D., Gosset, D., Quirion, D., and Deschanels, X. (1999) Study of B4C microstructure evolution under neutron irradiation by X-ray diffraction profiles analysis. J. Nucl. Mater., 264: 295–308. ( f) Maruyama, T., Onose, S., Kaito, T., and Horiuchi, H. (1997) Effect of fast neutron irradiation on the properties of boron carbide pellet. J. Nucl. Sci. Technol., 34: 1006–1014. ( g) Froment, K., Gosset, D., Guery, M., Kryger, B., and Verdeau, C. (1992) Neutron irradiation effects in boron carbides: Evolution of microstructure and thermal properties. J. Nucl. Mater., 188: 185–188. ( h) Schnarr, K., and Münzel, H. (1990) Release of tritium from boron carbide irradiated with reactor neutrons. J. Nucl. Mater., 170: 253–260. ( i) Inui, H., Mori, H., and Fujita, H. (1988) Electron irradiation induced crystalline to amorphous transition in boron carbide. Scripta Metallurgica, 22: 249–254. ( j) Suzuki, H., Maruyama, T., and Wakasa, T. (1979) Postirradiation annealing of boron carbide pellet irradiated in fast breeder reactor. J. Nucl. Sci. Technol., 16: 588–595. ( k) Iseki, T., Ito, M., Suzuki, H., and Honda, T. (1973) Effect of neutron-irradiation on thermal conductivity, electric resistivity and thermal expansion of boron carbide. J. Nucl. Sci. Technol., 10: 632–638. ( l) Jostsons, A., DuBose, C. K. H., Copeland, G. L., and Stiegler, J. O. (1973) Defect structure of neutron irradiated boron carbide. J. Nucl. Mater., 49: 136–150. ( m) Jostsons, A., DuBose, C. K. H. (1972) Microstructure of boron carbide after fast neutron irradiation. J. Nucl. Mater., 44: 91–95. ( n) Ashbee, K. H. G. (1971) Defects in boron carbide before and after neutron irradiation. Acta Metallurgica, 19: 1079–1085.
  • Gosset, D., Miro, S., Doriot, S., and Moncoffre, N. (2016) Amorphisation of boron carbide under slow heavy ion irradiation. J. Nucl. Mater., 476: 198–204.
  • Wu, J. C., Feng, Q. J., Liu, X. K., Zhan, C. Y., Zou, Y., and Liu, Y. G. (2016) A combination method for simulation of secondary knock-on atoms of boron carbide induced by neutron irradiation in SPRR-300. Nucl. Instrum. Meth. Phys. Res. Sect. B, 368: 1–4.
  • ( a) Cataldo, F. (2000) A Raman study on radiation-damaged graphite by γ-rays. Carbon, 38: 634–636. ( b) Cataldo, F., Ursini, O., Nasillo, G., Caponnetti, E., Carbone, M., Valentini, F., Palleschi, G., and Braun, T. (2013) Thermal properties, Raman spectroscopy and TEM images of neutron-bombarded graphite. Fullerenes Nanot. Carbon Nanostruct. 21: 634–643. (c) 34. Cataldo, F. (2000) On the Action of γ Radiation on Solid C60 and C70 Fullerenes: A Comparison with graphite irradiation. Fullerenes Nanot. Carbon Nanostruct., 8: 577–593. ( d) Cataldo, F., Baratta, G. A., and Strazzulla, G. (2002) He+ ion bombardment of C60 fullerene: An FT-IR and Raman study. Fullerenes Nanot. Carbon Nanostruct., 10: 197–206. ( e) Cataldo, F., Baratta, G. A., Ferini, G., and Strazzulla, G. (2003) He+ ion bombardment of C70 Fullerene: An FT-IR and Raman study. Fullerenes Nanot. Carbon Nanostruct., 11: 191–199. ( f) Strazzulla, G., Baratta, G., Brunetto, R., and Cataldo, F. (2005) Vibrational spectroscopy of ion irradiated carbon containing macromolecules. Macromol. Symp., 220: 165–175. ( g) Cataldo, F. (2000) Raman spectra of C60 fullerene photopolymers prepared in solution. Eur. Polym. J., 36: 653–656.
  • Cataldo, F., Angelini, G., Révay, Z., Osawa, E., and Braun, T. (2014) Wigner energy of nanodiamond bombarded with neutrons or irradiated with γ radiation. Fullerenes Nanot. Carbon Nanostruct., 22: 861–865.
  • Cataldo, F., Iglesias-Groth, S., Hafez, Y., and Angelini, G. (2014) Neutron bombardment of single wall carbon nanohorn (SWCNH): DSC determination of the stored Wigner-Szilard energy. J Radioanal. Nucl. Chem., 299: 1955–1963.
  • Iglesias-Groth, S., Cataldo, F., Hafez, Y. (2016) Neutron bombardment of C60 and C70 fullerenes: A spectroscopic and calorimetric study. Fullerenes, Nanotubes Carbon Nanostruct., 24(9): 547–554.
  • ( a) Di Luzio, M., Oddone, M., Prata, M., Alloni, D., and D'Agostino, G. (2017) Measurement of the neutron flux parameters f and α at the Pavia TRIGA Mark II reactor. J. Radioanal. Nucl. Chem., published online. doi:10.1007/s10967-017-5191-4. ( b) Prata, M., Alloni, D., De Felice, P., Palomba, M., Pietropaolo, A., Pillon, M., Quintieri, L., Santagata, A., and Valente, P. (2014) Italian neutron source. Eur. Phys. J. Plus, 129: 255.
  • Kuhlmann, U., Werheit, H., Schwetz, K. A. (1992) Distribution of carbon atoms on the boron carbide structure elements. J. Alloys Comp., 189: 249–258.
  • Lazzari, R., Vast, N., Besson, J. M., Baroni, S., and Dal Corso, A. (1999) Atomic structure and vibrational properties of icosahedral B4C boron carbide. Phys. Rev. Lett., 83: 3230.
  • Vast, N., Lazzari, R., Besson, J. M., Baroni, S., and Dal Corso, A. (2000) Atomic structure and vibrational properties of icosahedral α-boron and B4C boron carbide. Computat. Mater. Sci., 17: 127–132.
  • ( a) Iglesias-Groth, S., Cataldo, F., and Manchado, A. (2011) Infrared spectroscopy and integrated molar absorptivity of C60 and C70 fullerenes at extreme temperatures. Monthly Notices Roy. Astron. Soc., 413: 213–222. ( b) Cataldo, F., Iglesias-Groth, S., and Manchado, A. (2012) On the molar extinction coefficient and integrated molar absorptivity of the infrared absorption spectra of C60 and C70 fullerenes. Fullerenes Nanot. Carbon Nanostruct. 20: 191–199. ( c) Cataldo, F., Iglesias-Groth, S., Garcia-Hernandez, D. A., and Manchado, A. (2013) Determination of the integrated molar absorptivity and molar extinction coefficient of hydrogenated fullerenes. Fullerenes Nanot. Carbon Nanostruct., 21: 417–428.
  • Kakazey, M. G., Gonzalez-Rodriguez, J. G., Vlasova, M. V., and Shanina, B. D. (2002) Electron paramagnetic resonance in boron carbide. J. Appl. Phys., 91: 4438–4446.
  • Kakazey, M., Vlasova, M., Gonzalez-Rodriguez, J. G., Dominguez-Patiño, M., Leder, R. (2004) EPR-Characterization of Carbon Inclusions in Boron Carbide. J. Amer. Ceramic Soc., 87: 1336–1338.
  • ( a) Nightingale, R. E. (1962) Nuclear Graphite, Academic Press: New York, Chapter 12. ( b) Simmons, J. H. W. (1965) Radiation Damage of Graphite, Pergamon Press: Oxford. ( c) Eatherly, W. P. (1981) Nuclear graphite: The first years. J. Nucl. Mater., 100: 55–63. ( d) Ewels, C. P., Telling, R. H., El-Barbary, A. A., Heggie, M. I., and Briddon, P. R. (2003) Metastable Frenkel pair defect in graphite: Source of Wigner energy? Phys. Rev. Lett., 91: 025505. ( e) Telling, R. H., Ewels, C. P., Ahlam, A., and Heggie, M. I. (2003) Wigner defects bridge the graphite gap. Nature Mater., 2: 333–337. ( f) Hashimoto, A., Suenaga, K., Gloter, A., Urita, K., and Iijima, S. (2004) Direct evidence for atomic defects in graphene layers. Nature, 430: 870–873. ( g) Telling, R. H., and Heggie, M. I. (2007) Radiation defects in graphite. Phil. Mag., 87: 4797–4846.
  • Glasstone, S. (1957) Sourcebook on Atomic Energy. MacMillan & Co. Ltd: London, pp. 294–295.
  • Simeone, D., Hablot, O., Micalet, V., Bellon, P., and Serruys, Y. (1997) Contribution of recoil atoms to irradiation damage in absorber materials. J. Nucl. Mater., 246: 206–214.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.