400
Views
26
CrossRef citations to date
0
Altmetric
Original Articles

Hydrogen storage capacity of single-walled carbon nanotube prepared by a modified arc discharge

, , , &
Pages 355-358 | Received 28 Feb 2017, Accepted 08 Mar 2017, Published online: 08 Jun 2017

References

  • Lai, Q., Paskevicius, M., Sheppard, D. A., Buckley, C. E., Thornton, A. W., Hill, M. R., Gu, Q., Mao, J., Huang, Z., Liu, H. K., Guo, Z., Banerjee, A., Chakraborty, S., Ahuja, R., and Aguey-Zinsou, K. F. (2015) Hydrogen storage materials for mobile and stationary applications: Current state of the art. Chem. Sus. Chem., 8: 2789–2825.
  • Chakraborty, B., Modak, P., and Banerjee, S. (2012) Hydrogen storage in yttrium-decorated single walled carbon nanotube. J. Phys. Chem. C, 116: 22502–22508.
  • Suarez, J., and Huarte-Larranaga, F. (2012) Hydrogen confined in single-wall carbon nanotubes: Anisotropy effects on rovibrational quantum levels. J. Chem. Phys., 137: 064320-1-13.
  • Zhou, S. Q., Liu, X. J., Yang, K. W., and Zou, H. (2013) Study of H2 physical adsorption in single-walled carbon nanotube array. AIP Adv., 3: 082119-1-16.
  • Dillon, A. C., Jones, K. M., Bekkedahl, T. A., Kiang, C. H., Bethune, D. S., and Heben, M. J. (1997) Storage of hydrogen in single-walled carbon nan otubes. Nature, 386: 377–379.
  • Liu, C., Fan, Y. Y., Liu, M., Cong, H. T., Cheng, H. M., and Dresselhaus, M. S. (1999) Hydrogen storage in single-walled carbon nanotubes at room temperature. Science, 286: 1127–1129.
  • Kumar, R., Singh, R. K., Ghosh, A. K., Sen, R., Srivastava, S. K., Tiwari, R. S., and Srivastava, O. N. (2013) Synthesis of coal-derived single-walled carbon nanotube from coal by varying the ratio of Zr/Ni as bimetallic catalyst. J. Nanopart. Res., 15: 1406-1-11.
  • Kumar, R., Singh, R. K., Dubey, P. K., Yadav, R. M., Singh, D. P., Tiwari, R. S., and Srivastava, O. N. (2015) Highly zone-dependent synthesis of different carbon nanostructures using plasma-enhanced arc discharge technique. J. Nanopart. Res., 17: 24-1-9.
  • Kumar, R., Singh, R. K., Dubey, P. K., Kumar, P., Tiwari, R. S., and Oh, II-K. (2013) Pressure-dependent synthesis of high-quality few-layer graphene by plasma-enhanced arc discharge and their thermal stability. J. Nanopart. Res., 15: 1–10.
  • Lakshmi, I., Silambarasan, D., Surya, V. J., Rajarajeswari, M., Iyakutti, K., Mizuseki, H., and Kawazoe, Y. (2011) Computation of interaction potential of adsorbates on zigzag SWCNTs application to functionalization and hydrogen storage. Int. J. Nanosci., 10: 391–396.
  • Silambarasan, D., Surya, V. J., Vasu, V., Iyakutti, K. (2011) Experimental investigation of hydrogen storage in single walled carbon nanotubes functionalized with borane. Int. J. Hydrogen Ener., 36: 3574–3579.
  • Hamidi, S., and Golnabi, H. (2011) Hydrogen storage in single- and multi-walled carbon nanotubes and nanotube bundles. Aust. J. Basic Appl. Sci., 5: 483–490.
  • Silambarasan, D., Vasu, V., Surya, V. J., and Iyakutti, K. (2012) Investigation of hydrogen desorption from hydrogenated single-walled carbon nanotubes functionalized with borane. IEEE Trans. Nanotechnol., 11: 1047–1053.
  • Seenithurai, S., and Pandyan, R. K. (2013) H2 adsorption in Ni and passivated Ni doped 4 Å single walled carbon nanotube. Int. J. Hydrogen Ener., 18: 7376–7381.
  • Tian, Z. Y., Liu, Y. T., Wu, W. W., Jiang, L. N., and Dong, S. L. (2013) Hydrogen storage of capped single-walled carbon nanotube via transition-metal doping. Europhys. Lett., 104: 5065–5083.
  • Zhou, S. Q., Liu, X. J., Yang, K. W., and Zou, H. (2013) Study of H2 physical adsorption in single-walled carbon nanotube array. AIP Adv., 3: 7436–7436.
  • Silambarasan, D., Vasu, V., Iyakutti, K., Surya, V. J., and Ravindran, T. R. (2014) Reversible hydrogen storage in functionalized single-walled carbon nanotubes. Phys. E Low-Dimensional Syst. Nanostruct., 60: 75–79.
  • Wang, L., and Yang, R. T. (2008) New sorbents for hydrogen storage by hydrogen spillover-a review. Ener. Environ. Sci., 1: 268–279.
  • Wang, L. F., and Yang, R. T. (2010) Hydrogen storage on carbon-based adsorbents and storage at ambient temperature by hydrogen spillover. Catal. Rev., 52: 411–461.
  • Bhowmick, R., Rajasekaran, S., Friebel, D., Beasley, C., Jiao, L. Y., Ogasawara, H., Dai, H. J., Clement, B., and Nisson, A. (2011) Hydrogen spillover in Pt-single-walled carbon nanotube composites: Formation of stable C-H bonds. J. Am. Chem. Soc., 133: 5580–5586.
  • Surya, V. J., Iyakutti, K., Rajarajeswari, M., and Kawazoe, Y. (2010) First-principles study on hydrogen storage in single walled carbon nanotube functionalized with ammonia. J. Comput. Theor. Nanos., 7: 552–557.
  • Verdinelli, V., German, E., Luna, C. R., Marchetti, J. M., Volpe, M. A., and Juan, A. (2014) Theoretical study of hydrogen adsorption on Ru-decorated (8,0) single-walled carbon nanotube. J. Phys. Chem. C., 118: 27672–27680.
  • Rosalba, J. M., Andreas, M., Agnieszka, B. K., and Lars, G. M. (2015) Pettersson and Thomas Heine. Theoretical analysis of hydrogen spillover mechanism on carbon nanotubes. Front. Chem., 3: 1–9.
  • Karami, H. Z., Hashemifar, S. J., Sayedi, S. M., and Sheikhi, M. H. (2013) First-principles study of H2 adsorption on the pristine and oxidized (8,0) carbon nanotube. Int. J. Hydrogen Energ., 38: 13680–13686.
  • Zhao, T. K., Tang, Q. H., Liu, Y. N., Zhu, C. C., and Zhao, X. (2007) Catalyst composition and content effects on the synthesis of single-walled carbon nanotubes by arc discharge. J. Nanomater., 1: 1–4.
  • Zhao, T. K., Liu, Y. N., Li, T. H., and Zhao, X. (2010) Current and arc pushing force effects on the synthesis of single-walled carbon nanotubes by arc discharge. J. Nanosci. Nanotech., 10: 4078–4081.
  • Zhao, T. K., Li, G. M., Liu, L. H., Du, L., Liu, Y. N., and Li, T. H. (2011) Hydrogen storage behavior of amorphous carbon nanotubes at low pressure and room temperature. Fuller. Nanotub. Carbon Nanostruct., 8: 677–683.
  • Kumar, R., Singh, R. K., Tiwari, V. S., Yadav, A., Savu, R., Vaz, A. R., and Moshkalev, S. A. (2017) Enhanced magnetic performance of iron oxide nanoparticles anchored pristine/N-doped multi-walled carbon nanotubes by microwave-assisted approach. J. Alloys Compd., 695: 1793–1801.
  • Nilsson, A., and Pettersson, L. G. M. (2004) Chemical bonding on surfaces probed by X-ray emission spectroscopy and density functional theory. Surf. Sci. Rep., 55: 49–167.
  • Nikitin, A., Li, X. L., Zhang, Z. Y., Ogasawara, H., Dai, H. J., and Nilsson, A. (2008) Hydrogen storage in carbon nanotubes through the formation of stable C-H bonds. Nano Lett., 8: 162–167.
  • Kumar, R., Oh, J. H., Kim, H. J., Jung, J. H., Hong, W. G., Kim, H. J., Park, J. Y., and Oh, II-K. (2015) Nanohole-structured and palladium-embedded 3D porous graphene for ultrahigh hydrogen storage and CO oxidation multifunctionalities. ACS Nano, 9: 7343–7351.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.