179
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Coral-like amorphous carbon nanotubes synthesized by a modified arc discharge

, , , &
Pages 359-362 | Received 05 Mar 2017, Accepted 10 Mar 2017, Published online: 08 Jun 2017

References

  • Zhao, T. K., Liu, Y. N., and Zhu, J. W. (2005) Catalyst and temperature effects on the production of amorphous carbon nanotubes produced by a modified arc discharge. Carbon, 43: 2909–2912.
  • Liu, Y. N., Song, X. L., Zhao, T. K., Zhu, J. W., Michael, H., and Fritz, P. (2004) Amorphous carbon nanotubes produced by a temperature controlled DC arc discharge. Carbon, 42: 1852–1855.
  • Zhao, T. K., Liu, Y. N., and Zhu, J. W. (2004) Large scale and high purity synthesis of single-walled carbon nanotubes by arc discharge at controlled temperature. Carbon, 42: 2909–2912.
  • Zhao, T. K., Liu, Y. N., Li, T. H., and Zhao, X. (2010) Current and arc pushing force effects on the synthesis of single-walled carbon nanotubes by arc discharge. J. Nanosci. Nanotechnol., 10: 4078–81.
  • Zhao, T. K., Hou, C. L., Zhang, H. Y., Zhu, R. X., She, S. F., Wang, J. G., Li, T. H., Liu, Z. F., and Wei, B. Q. (2014) Electromagnetic wave absorbing properties of amorphous carbon nanotubes. Sci. Rep., 4: 5619–5619.
  • Wang, W. L., Lu, W. Y., Yang, S. H., and Li, X. Y. (1997) Amorphous-carbon nanotubes: the growth intermediates of graphitic carbon nanotube? Electrochemical Soc. Proc., 14: 814–824.
  • Ci, L. J., Zhu, H. W., Wei, B. Q., Xu, C. L., and Wu, D. H. (2003) Annealing amorphous carbon nanotubes for their application in hydrogen storage. Appl. Surf. Sci., 205: 39–43.
  • Nishino, H., Yamaguchi, C., Haruyuki, N., and Ryoichi, N. (2003) Carbon nanotube with amorphous carbon wall: a-CNT. Carbon, 41: 2165–2167.
  • Nishino, H., Nishida, R., Matsui, T., Kawase, N., and Mochida, I. (2003) Growth of amorphous carbon nanotube from poly(tetrafluoroethylene) and ferrous chloride. Carbon, 41: 2819–2823.
  • Zhou, X. S., Yu, L., Yu, X. Y., and Lou, X. W. (2016) Encapsulating Sn nanoparticles in amorphous carbon nanotubes for enhanced lithium storage properties. Adv. Energy Mater., 6: 1601177.
  • Bhowmick, P., Banerjee, D., Santra, S., Sen, D., Dasa, B., and Chattopadhyay, K. K. (2016) Amorphous carbon nanotubes as potent sorbents for removal of a phenolic derivative compound and arsenic: theoretical support of experimental findings. RSC Adv., 6: 8913–8922.
  • Wang, G., Wang, H. Y., Wang, H., and Bai, J. T. (2016) Composites of amorphous carbon nanotube-modified reduced graphene oxide synthesized by ethanol decomposition and electrochemical evaluation of their lithium storage properties. J. Mater. Sci., 51: 5529–5544.
  • Xu, X., Tan, H., Xi, K., Ding, S. J., Yu, D. M., Cheng, S. D., Yang, G., Peng, X. Y., Fakeeh, A., and Kumar, R. V. (2015) Bamboo-like amorphous carbon nanotubes clad in ultrathin nickel oxide nanosheets for lithium-ion battery electrodes with long cycle life. Carbon, 84: 491–499.
  • He, C. N., Chen, L., Shi, C. S., Zhang, C. G., Liu, E. Z., Li, J. J., Zhao, N. Q., Wang, X. M., Makino, A., and Inoue, A. (2013) Direct synthesis of amorphous carbon nanotubes on Fe76Si9B10P5 glassy alloy particles. J. Alloys Compounds, 581: 282–288.
  • Johan, M. R., Suhaimy, S. H. M., and Yusof, Y. (2014) Physico-chemical studies of cuprous oxide (Cu2O) nanoparticlescoated on amorphous carbon nanotubes (α-CNTs). Appl. Surf. Sci., 289: 450–454.
  • Sun, L., Yan, C. J., Chen, Y., Wang, H. Q., and Wang, Q. Y. (2012) Preparation of amorphous carbon nanotubes using attapulgite as template and furfuryl alcohol as carbon source. J. Non-Cryst. Solids, 358: 2723–2726.
  • Zhu, S. J., Zhang, J., Ma, J. J., Zhang, Y. X., and Yao, K. X. (2015) Rational design of coaxial mesoporous birnessite manganese dioxide/amorphous-carbon nanotubes arrays for advanced asymmetric supercapacitors. J. Power Sources, 278: 555–561.
  • Chen, Y. M., Lu, Z. G., Zhou, L. M., Mai, Y. W., and Huang, H. T. (2012) Triple-coaxial electrospun amorphous carbon nanotubes with hollow graphitic carbon nanospheres for high-performance Li ion batteries. Energy Environ. Sci., 5: 7898.
  • Lee, I. H., Im, J. W., Kim, U. J., Bae, E. J., Kim, K. K., Lee, E. H., Lee, Y. H., Hong, S. H., and Min, Y. S. (2010) Low Temperature growth of single-walled carbon nanotube forest. Bull.-Korean Chem. Soc., 31: 2819–2822.
  • Loebick, C. Z., Abanulo, D., Majewska, M., Haller, G. L., and Pfefferle, L. D. (2010) Effect of reaction temperature in the selective synthesis of single wall carbon nanotubes (SWNT) on a bimetallic CoCr-MCM-41 catalyst. Appl. Catalysis A Gen., 374: 213–220.
  • Su, Y., Yang, Z., Wei, H., Kong, E. S., and Zhang, Y. F. (2011) Synthesis of single-walled carbon nanotubes with selective diameter distributions using DC arc discharge under CO mixed atmosphere. Appl. Surf. Sci., 257: 3123–3127.
  • Wang, H., Yuan, Y., Wei, L., Goh, K., Yu, D. S., and Chen, Y. (2015) Catalysts for chirality selective synthesis of single-walled carbon nanotubes. Carbon, 81: 1–19.
  • Zhao, T. K., Li, G. M., Liu, L. H., Liu, Y. N., and Li, T. H. (2011) Physical model for the growth of amorphous carbon nanotubes. Appl. Phys. Lett., 98: 163111–163111-3.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.