169
Views
4
CrossRef citations to date
0
Altmetric
Articles

Application of multi-functional chestnut shell in one-step preparing Fe3O4@C magnetic nanocomposite with high adsorption performance

, , &
Pages 471-478 | Received 20 Nov 2017, Accepted 02 Mar 2018, Published online: 10 Aug 2018

References

  • Rezayan, A. H.; Mousavi, M.; Kheirjou, S.; Amoabediny, G.; Ardestani, M. S.; Mohammadnejad, J. Monodisperse magnetite (Fe3O4) nanoparticles modified with water soluble polymers for the diagnosis of breast cancer by MRI method. J. Magn. Magn. Mater., 2016, 420, 210–217.
  • Costo, R.; Bello, V.; Robic, C.; Port, M.; Marco, J. F.; Puerto Morales, M.; Veintemillas-Verdaguer, S. Ultrasmall iron oxide nanoparticles for biomedical applications: improving the colloidal and magnetic properties. Langmuir, 2012, 28, 178–185.
  • Shariati, S.; Faraji, M.; Yamini, Y.; Rajabi, A. A. Fe3O4 magnetic nanoparticles modified with sodium dodecyl sulfate for removal of safranin O dye from aqueous solutions. Desalination, 2011, 270, 160–165.
  • Elliott, D. W.; Zhang, W. Field assessment of nanoscale bimetallic particles for ground water treatment. Environ. Sci. Technol., 2001, 35, 4922–4926.
  • Takafuji, M.; Ide, S.; Ihara, H.; Xu, Z. Preparation of poly (1-vinylimidazole)-grafted magnetic nanoparticles and their application for removal of metal ions. Chem. Mate., 2004, 16, 1977–1983.
  • Zhong, L. S.; Hu, J. S.; Liang, H. P.; Cao, A. M.; Song, W. G.; Wan, L. J. Self-assembled 3D flower like iron oxide nanostructures and their application in water treatment. Adv. Mater., 2006, 18, 2426–2431.
  • Dong, J.; Xu, Z.; Kuznicki, S. M. Mercury removal from flue gases by novel regenerable magnetic nanocomposite sorbents. Environ. Sci. Technol., 2009, 43, 3266–3271.
  • Zhang, Z.; Kong, J. Novel magnetic Fe3O4@C nanoparticles as adsorbents for removal of organic dyes from aqueous solution. J. Hazard. Mater., 2009, 193, 325–329.
  • Müller, S. Magnetic fluid hyperthermia therapy for malignant brain tumors-an ethical discussion. Nanomed. Nanotechnol., 2009, 5, 387–393.
  • Podgórna, K.; Szczepanowicz, K. Synthesis of polyelectrolyte nanocapsules with iron oxide (Fe3O4) nanoparticles for magnetic targeting. Colloid Surf. A., 2016, 505, 132–137.
  • Wang, C.; Tao, S.; Wei, W.; Meng, C.; Liu, F.; Han, M. Multifunctional mesoporous material for detection, adsorption and removal of Hg2+ in aqueous solution. J. Mater. Chem., 2010, 20, 4635–4641.
  • Lin, C.; Lin, Y.; Ho, J. Adsorption of Reactive Red 2 from aqueous solutions using Fe3O4 nanoparticles prepared by co-precipitation in a rotating packed bed. J. Alloy. Compd., 2016, 666, 153–158.
  • Su, M.; He, C.; Shih, K. Facile synthesis of morphology and size-controlled α-Fe2O3 and Fe3O4 nano-and microstructures by hydrothermal/solvothermal process: the roles of reaction medium and urea dose. Ceram. Int., 2016, 42, 14793–14804.
  • Liu, Y.; Wang, X.; Ma, W.; Mujtaba, J.; Sun, G.; Zhao, J.; Sun, H. One-pot hydrothermal synthesis of hollow Fe3O4 microspheres assembled with nanoparticles for lithium-ion battery anodes. Mater. Lett., 2016, 172, 76–80.
  • Dong, N.; He, F.; Xin, J.; Wang, Q.; Lei, Z.; Su, B. Preparation of CoFe2O4 magnetic fiber nanomaterial via a template-assisted solvothermal method. Mater. Lett., 2015, 141, 238–241.
  • Su, B.; Xin, J.; Li, J.; Zheng, T.; Wang, Q.; Lei, Z. The role of multi-level structure for the improved photocatalytic performance of TiO2 fiber nanomaterial. Appl. Phys. A, 2016, 122, 2–7.
  • Dong, N.; He, F.; Xin, J.; Wang, Q.; Lei, Z.; Su, B. A novel one-step hydrothermal method to prepare CoFe2O4/graphene-like carbons, magnetic separable adsorbent. Mater. Res. Bull., 2016, 80, 186–190.
  • Jin, Z.; Dong, Y.; Dong, N.; Yang, Z.; Wang, Q.; Lei, Z.; Su, B. One-step synthesis of magnetic nanocomposite Fe3O4/C based on the waste chicken feathers by a green solvothermal method. Mater. Lett., 2017, 186, 322–325.
  • Memon, G.; Bhanger, M.; Akhtar, M. The removal efficiency of chestnut shells for selected pesticides from aqueous solutions. J. Colloid Interface Sci., 2007, 315, 33–40.
  • Vázquez, G.; Fontenla, E.; Santos, J.; Freire, M. S.; González-Álvarez, J.; Antorrena, G. Antioxidant activity and phenolic content of chestnut (Castanea sativa) shell and eucalyptus (Eucalyptus globulus) bark extracts. Ind. Crops. Prod., 2008, 28, 279–285.
  • Vázquez, G.; Mosquera, O.; Freire, M. S.; Antorrena, G.; González-Álvarez, J. Alkaline pre-treatment of waste chestnut shell from a food industry to enhance cadmium copper, lead and zinc ions removal. Chem. Eng. J., 2012, 184, 147–155.
  • Chena, S.; Tanga, J.; Jinga, X.; Liub, Y.; Yuanb, Y.; Zhou, S. A hierarchically structured urchin-like anode derived from chestnut shells for microbial energy harvesting. Electrochim. Acta, 2016, 212, 883–889.
  • Vázquez, G.; Calvo, M.; Sonia Freire, M.; González-Álvarez, J.; Antorrena, G. Chestnut shell as heavy metal adsorbent: optimization study of lead, copper and zinc cations removal. J. Hazard. Mater., 2009, 172, 1402–1414.
  • Stobinski, L.; Lesiak, B.; Malolepszy, A.; Mazurkiewicz, M.; Mierzwa, B.; Zemek, J.; Jiricek, P.; Bieloshapk, I. Graphene oxide and reduced graphene oxide studied by the XRD, TEM and electron spectroscopy methods. J. Electron. Spectrosc., 2014, 195, 145–154.
  • Alveroğlu, E.; Sözeri, H.; Baykal, A.; Kurtan, U.; Şenel, M. Fluorescence and magnetic properties of hydrogels containing Fe3O4 nanoparticles. J. Mol. Struct., 2013, 1037, 361–366.
  • Huda, S.; Yang, Y. Composites from ground chicken quill and polypropylene. Compos. Sci. Technol., 2008, 68, 790–798.
  • from aqueous solution by a solvothermal-synthesized graphene/magnetite composite. J. Hazard. Mater., 192, 1515–1524.
  • Ai, L.; Jiang, J. Fast removal of organic dyes from aqueous solutions by AC/ferrospinel composite. Desalination, 2010, 262, 134–140.
  • Ghaedi, M.; Hassanzadeh, A.; Nasiri Kokhdan, S. Multiwalled Carbon Nanotubes as Adsorbents for the Kinetic and Equilibrium Study of the Removal of Alizarin Red S and Morin. J. Chem.Eng. Data., 2011, 56, 2511–2520.
  • Hameed, B. H.; Ahmad, A. A.; Aziz, N. Adsorption of reactive dye on palm-oil industry waste: Equilibrium, kinetic and thermodynamic studies. Desalination, 2009, 247, 551–560.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.