141
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Value-added utilization of pyrolysis heavy distillate for the synthesis of nitrogen doped graphene with chemical vapor deposition

, ORCID Icon, &
Pages 525-530 | Received 05 Feb 2019, Accepted 10 Mar 2019, Published online: 11 Jun 2019

References

  • Geim, A. K.; Novoselov, K. S. The Rise of Graphene. Nature Mater. 2007, 6, 183–191. DOI: 10.1038/nmat1849.
  • Avouris, P.; Dimitrakopoulos, C. Graphene: Synthesis and Applications. Mater. Today. 2012, 15, 86–97. DOI: 10.1016/S1369-7021(12)70044-5.
  • Lee, C.; Wei, X. D.; Kysar, J. W.; Hone, J. Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science. 2008, 321, 385–388. DOI: 10.1126/science.1157996.
  • Nair, R. R.; Blake, P.; Grigorenko, A. N.; Novoselov, K. S.; Booth, T. J.; Stauber, T.; Peres, N. M. R.; Geim, A. K. Fine Structure Constant Defines Visual Transparency of Graphene. Science. 2008, 320, 1308–1316. DOI: 10.1126/science.1156965.
  • Prasai, D.; Tuberquia, J. C.; Harl, R. R.; Jennings, G. K.; Rogers, B. R.; Bolotin, K. I. Graphene: Corrosion-Inhibiting Coating. ACS Nano 2012, 6, 1102–1108. DOI: 10.1021/nn203507y.
  • Novoselov, K. S.; Geim, A. K.; Morozov, S. Z.; Jiang, D.; Zhang, Y.; Dubonos, S. V. Electric Field Effect in Atomically Thin Carbon Films. Science. 2004, 306, 666–669. DOI: 10.1126/science.1102896.
  • Berger, C.; Song, Z. M.; Li, X. B.; Wu, X. S.; Brown, N.; Naud, C. Electronic Confinement and Coherence in Patterned Epitaxial Graphene. Science. 2006, 312, 1191–1196. DOI: 10.1126/science.1125925.
  • Reina, A.; Jia, X. T.; Ho, J.; Nezich, D.; Son, H. B.; Bulovic, V.; Dresselhaus, M. S.; Kong, J. Large Area, Few Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition. Nano Lett. 2009, 9, 30–35. DOI: 10.1021/nl801827v.
  • Stankovich, S.; Dikin, D. A.; Piner, R. D.; Kohlhaas, K. A.; Kleinhammes, A.; Jia, Y.; Wu, Y.; Nguyen, S. T.; Ruoff, R. S. Synthesis of Graphene-Based Nanosheets via Chemical Reduction, of Exfoliated Graphite Oxide. Carbon. 2007, 45, 1558–1565. DOI: 10.1016/j.carbon.2007.02.034.
  • Subrahmanyam, K. S.; Panchakarla, L. S.; Govindaraj, A.; Rao, C. N. R. Simple Method of Preparing Graphene Flakes by an Arc-Discharge Method. J. Phys. Chem. C. 2009, 113, 4257–4259. DOI: 10.1021/jp900791y.
  • Choucair, M.; Thordarson, P.; Stride, J. A. Gram-Scale Production of Graphene Based on Solvothermal Synthesis and Sonication. Nature Nanotech. 2009, 4, 30–33. DOI: 10.1038/nnano.2008.365.
  • Ji, H.; Hao, Y.; Ren, Y.; Charlton, M.; Lee, W. H.; Wu, Q.; Li, H.; Zhu, Y.; Wu, Y.; Piner, R.; et al. Graphene Growth Using a Solid Carbon Feedstock and Hydrogen. ACS Nano. 2011, 5, 7656–7661. DOI: 10.1021/nn202802x.
  • Cho, H.; Lee, C.; Oh, I. S.; Park, S.; Kim, H. C.; Kim, M. J. Parametric Study of Methanol Chemical Vapor Deposition Growth for Graphene. Carbon Letters. 2012, 13, 205–211. DOI: 10.5714/CL.2012.13.4.205.
  • Zhang, B.; Lee, W. H.; Piner, R.; Kholmanov, I.; Wu, Y.; Li, H.; Ji, H.; Ruoff, R. S. Low-Temperature Chemical Vapor Deposition Growth of Graphene from Toluene on Electropolished Copper Foils. ACS Nano. 2012, 6, 2471–2476. DOI: 10.1021/nn204827h.
  • Somekh, M.; Shawat, E.; Nessim, G. D. Fully Reproducible, Low-Temperature Synthesis of High-Quality, Few-Layer Graphene on Nickel via Preheating of Gas Precursors Using Atmospheric Pressure Chemical Vapor Deposition. J. Mater. Chem. A. 2014, 2, 19750–19758. DOI: 10.1039/C4TA03876B.
  • Santangelo, S.; Messina, G.; Malara, A.; Lisi, N.; Dikonimos, T.; Capasso, A.; Ortolani, L.; Morandi, V.; Faggio, G. Taguchi Optimized Synthesis of Graphene Films by Copper Catalyzed Ethanol Decomposition. Diam. Relat. Mater. 2014, 41, 73–78. DOI: 10.1016/j.diamond.2013.11.006.
  • Jang, J.; Son, M.; Chung, S.; Kim, K.; Cho, C.; Lee, B. H.; Ham, M. H. Low-Temperature Grown Continuous Graphene Films from Benzene by Chemical Vapor Deposition at Ambient Pressure. Sci. Rep. 2015, 5, 17955. DOI: 10.1038/srep17955.
  • Ao, Z. M.; Peeters, F. M. Electric Field Activated Hydrogen Dissociative Adsorption to Nitrogen-Doped Graphene. J. Phys. Chem. C. 2010, 114, 14503–14509. DOI: 10.1021/jp103835k.
  • Zhou, Y.; Neyerlin, K.; Olson, T. S.; Pylypenko, S.; Bult, J.; Dinh, H. N.; Gennett, T.; Shao, Z.; O'Hayre, R. Enhancement of Pt and Pt-Alloy Fuel Cell Catalyst Activity and Durability via Nitrogen-Modified Carbon Supports. Energy Environ. Sci. 2010, 3, 1437–1446. DOI: 10.1039/C003710.
  • Geng, D.; Chen, Y.; Chen, Y.; Li, Y.; Li, R.; Sun, X.; Ye, S.; Knights, S. High Oxygen-Reduction Activity and Durability of Nitrogen-Doped Graphene. Energy Environ. Sci. 2011, 4, 760–764. DOI: 10.1039/c0ee00326c.
  • Xu, C.; Ning, G.; Zhu, X.; Wang, G.; Liu, X.; Gao, J.; Zhang, Q.; Qian, W.; Wei, F. Synthesis of Graphene from Asphaltene Molecules Adsorbed on Vermiculite Layers. Carbon, 2013, 6, 213–221. DOI: 10.1016/j.carbon.2013.05.059.
  • Wu, A.; Li, X.; Yang, J.; Du, C.; Shen, W.; Yan, J. Upcycling Waste Lard Oil into Vertical Graphene Sheets by Inductively Coupled Plasma Assisted Chemical Vapor Deposition. Nanomaterials. 2017, 7, 318–326. DOI: 10.3390/nano7100318.
  • Sharma, S.; Kalita, G.; Hirano, R.; Shinde, S. M.; Papon, R.; Ohtani, H.; Tanemura, M. Synthesis of Graphene Crystals from Solid Waste Plastic by Chemical Vapor Deposition. Carbon 2014, 72, 66–73. DOI: 10.1016/j.carbon.2014.01.051.
  • Ruan, G.; Sun, Z.; Peng, Z.; Tour, J. M. Growth of Graphene from Food, Insects, Andwaste. ACS Nano. 2011, 5, 7601–7607. DOI: 10.1021/nn202625c.
  • Raghavan, N.; Thangavel, S.; Venugopal, G. A Short Review on Preparation of Graphene from Waste and Bioprecursors. Appl. Mater. Today 2017, 7, 246–254. DOI: 10.1016/j.apmt.2017.04.005.
  • Malard, L. M.; Pimenta, M. A.; Dresselhaus, G.; Dresselhaus, M. S. Raman Spectroscopy in Graphene. Phys. Rep. 2009, 473, 51–87. DOI: 10.1016/j.physrep.2009.02.003.
  • Ferrari, A. C.; Meyer, J. C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K. S.; Roth, S.; A. K. Geim. Raman Spectrum of Graphene and Graphene Layers. Phys. Rev. Lett. 2006, 97, 7401–7403. DOI: 10.1103/PhysRevLett.97.187401.
  • Tang, B.; Guoxin, H.; Gao, H. Raman Spectroscopic Characterization of Graphene. Appl. Spec. Rev. 2010, 45, 369–407. DOI: 10.1080/05704928.2010.483886.
  • Liao, C. D.; Lu, Y. Y.; Tamalampudi, S. R.; Cheng, H. C.; Chen, Y. T. Chemical Vapor Deposition Synthesis and Raman Spectroscopic Characterization of Large-Area Graphene Sheets. J. Phys. Chem. A. 2013, 117, 9454–9461. DOI: 10.1021/jp311757r.
  • Ni, Z. H.; Yu, T.; Luo, Z. Q.; Wang, Y. Y.; Liu, L.; Wong, C. P.; Miao, J.; Huang, W.; Shen, Z. X. Probing charged impurities in suspended graphene using Raman spectroscopy. ACS Nano. 2009, 3, 569–574.
  • Venezuela, P.; Lazzeri, M.; Mauri, F. Theory of double-resonant Raman spectra in graphene: intensity and line shape of defect-induced and two-phonon bands. Phys Rev B. 2011, 84, 1-25.035433.
  • Koos, A. A.; Dowling, M.; Jurkschat, K.; Crossley, A.; Grobert, N. Effect of the Experimental Parameters on the Structure of Nitrogen-Doped Carbon Nanotubes Produced by Aerosol Chemical Vapour Deposition. Carbon. 2009, 47, 30–37.
  • Rozada, R.; Paredes, J. I.; López, M. J.; Villar-Rodil, Cabria, S.; A. Martínez-Alonso, I.; Alonso, J. A.; Tascón, J. M. D. From Graphene Oxide to Pristine Graphene: Revealing the Inner Workings of the Full Structural Restoration. Nanoscale. 2015, 7, 2374–2390.
  • Cançado, L. G.; Takai, K.; Enoki, T.; Endo, M.; Kim, Y. A.; Mizusaki, H.; Jorio, A.; Coelho, L. N.; Magalhaes-Paniago, R. ; Pimenta, M. A. General equation for the determination of the crystallite size La of nanographite by Raman spectroscopy. Appl. Phys. Lett. 2006, 88, 163106–163109.
  • Zhang X., Ning J., Li X., Wang B., Hao L., Liang M., Jin M., and Zhi L. Hydrogen induced effects on the CVD growth of high-quality graphene structures. Nanoscale, 2013, 5, 8363–8366.
  • Vlassiouk, I.; Regmi, M.; Fulvio, P.; Dai, S.; Datskos, P.; Eres, G.; Smirnov, S. Role of Hydrogen in Chemical Vapor Deposition Growth of Large Single-Crystal Graphene. ACS Nano, 2011, 5, 6069- 6076.
  • Waje, S.B.; Hashim, M.; Yusoff, W.D.W.; Abbas, Z. X-ray diffraction studies on crystallite size evolution of CoFe 2O 4 nanoparticles prepared using mechanical alloying and sintering. Applied Surface Science. 2010, 256, 3122–3127.
  • Wei, D.; Liu, Y.; Wang, Y.; Zhang, H.; Huang, L.; Yu ,G. Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties. Nano Lett. 2009, 9, 1752–1758.
  • Wang, H.; Maiyalagan, T.; Wang, X. Review on Recent Progress in Nitrogen-Doped Graphene: Synthesis, Characterization, and Its Potential Applications. ACS Catal. 2012, 2, 781–794.
  • Ewels, C. P.; Glerup, M. Nitrogen doping in carbon nanotubes. J. Nanosci. Nanotech. 2005, 5, 1345–1363.
  • Losurdo, M.; Giangregorio, M. M.; Capezzuto, P.; Bruno, G. Graphene CVD growth on copper and nickel: role of hydrogen in kinetics and structure, Phys. Chem. Chem. Phys., 2011, 13, 20836–20843.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.