244
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

Neutron radiation shielding with PUR composites loaded with B4C or graphite

ORCID Icon &
Pages 531-537 | Received 01 Apr 2019, Accepted 03 Apr 2019, Published online: 25 Apr 2019

References

  • Nambiar, S.; Yeow, J. T. Polymer-Composite Materials for Radiation Protection. ACS Appl. Mater. Interfaces 2012, 4, 5717–5726. DOI: 10.1021/am300783d.
  • Li, Q.; Wei, Q.; Zheng, W.; Zheng, Y.; Okosi, N.; Wang, Z.; Su, M. Enhanced Radiation Shielding with Conformal Light-Weight Nanoparticle–Polymer Composite. ACS Appl. Mater. Interfaces 2018, 10, 35510–35515. DOI: 10.1021/acsami.8b10600.
  • Zhang, X.; Zhang, X.; Guo, S. Simple Approach to Developing High‐Efficiency Neutron Shielding Composites. Polym. Engin. Sci 2019, 59, E349–E355.
  • Profio, A. E. Radiation Shielding and Dosimetry. Wiley, New York, 1979.
  • Mattsson, S., Hoeschen, C. (Eds.). Radiation Protection in Nuclear Medicine. Springer Verlag, Berlin, 2013.
  • Grupen, C. Introduction to Radiation Protection. Practical Knowledge for Handling Radioactive Substances. Springer Verlag, Berlin, 2010.
  • Letaw, J. R.; Silberberg, R.; Tsao, C. H. Radiation Hazards on Space Missions outside the Magnetosphere. Adv. Space Res. 1989, 9, 285–291. DOI: 10.1016/0273-1177(89)90451-1.
  • Miroshnichenko, L. I. Radiation Hazard in Space. Springer Science & Business Media, New York, 2003.
  • Singleterry, R. C. Radiation Engineering Analysis of Shielding Materials to Assess Their Ability to Protect Astronauts in Deep Space from Energetic Particle Radiation. Acta Astronaut 2013, 91, 49–54. DOI: 10.1016/j.actaastro.2013.04.013.
  • Campajola, L.; Di Capua, F. Applications of Accelerators and Radiation Sources in the Field of Space Research and Industry. Top. Curr. Chem. 2017, 374, 84.
  • Song, Y.; Wu, W.; Du, S. Tokamak Engineering Mechanics. Springer, Berlin- Heidelberg, 2014.
  • Knoepfel, H. Tokamak Reactors for Breakeven: A Critical Study of the near-Term Fusion. Pergamon Press, Oxford, 1978.
  • Cataldo, F.; Prata, M. New Composites for Neutron Radiation Shielding. J. Radioanal. Nucl. Chem. [accepted for publication].
  • Gargaud, M. (Ed.). Encyclopedia of Astrobiology. Springer-Verlag, Berlin, 2011.
  • Henriksen, T.; Maillie, H. D. Radiation and Health. Taylor & Francis, London, 2003.
  • Zeitlin, C.; Cleghorn, T.; Cucinotta, F.; Saganti, P.; Andersen, V.; Lee, K.; Pinsky, L.; Atwell, W.; Turner, R.; Badhwar, G. Overview of the Martian Radiation Environment Experiment. Adv. Space Res. 2004, 33, 2204–2210. DOI: 10.1016/S0273-1177(03)00514-3.
  • McKenna-Lawlor, S.; Gonçalves, P.; Keating, A.; Reitz, G.; Matthiä, D. Overview of Energetic Particle Hazards during Prospective Manned Missions to Mars. Planet. Space Sci. 2012, 63, 123–132. DOI: 10.1016/j.pss.2011.06.017.
  • Prata, M.; Alloni, D.; De Felice, P.; Palomba, M.; Pietropaolo, A.; Pillon, M.; Quintieri, L.; Santagata, A.; Valente, P. Italian Neutron Sources. Eur. Phys. J. Plus 2014, 129, 255.
  • Protti, N.; Bortolussi, S.; Prata, M.; Bruschi, P.; Altieri, S.; Nigg, D. Neutron Spectrometry for the University of Pavia TRIGATM Thermal Neutron Source Facility. Trans. Am. Nucl. Soc. 2012, 107, 1269–1272.
  • Alloni, D.; di Tigliole, A. B.; Bruni, J.; Cagnazzo, M.; Cremonesi, R.; Magrotti, G.; Oddone, F.; Panza, A.; Prata, M.; Salvini, A. Neutron Flux Characterization of the SM1 Sub- Critical Multiplying Complex of the Pavia University. Progr. Nucl. Energy 2013, 67, 98–103. DOI: 10.1016/j.pnucene.2013.04.004.
  • Magill, J.; Galy, J. Radioactivity Radionuclides Radiation. Springer Science & Business Media, Berlin, 2005.
  • Choppin, G. R.; Rydberg, J. Nuclear Chemistry. Theory and Applications. Pergamon Press, Oxford, 1980.
  • Cataldo, F.; Iglesias-Groth, S. Neutron Damage of Hexagonal Boron Nitride: h-BN. J. Radioanal. Nucl. Chem. 2017, 313, 261–271. DOI: 10.1007/s10967-017-5289-8.
  • Cataldo, F.; Iglesias-Groth, S.; Hafez, Y. Neutron Bombardment of Boron Carbide B12C3: A FT-IR, Calorimetric (DSC) and ESR Study. Fullerenes Nanot. Carbon. Nanostruct. 2017, 25, 371–378. DOI: 10.1080/1536383X.2017.1303831.
  • Pascale, S.; Scatena, E.; Fabbri, F.; Cataldo, F. Morphological and Structural Properties of Neutron-Irradiated B12C3 Boron Carbide Microcrystals. Fullerenes Nanot. Carbon Nanostruct. 2017, 25, 585–588. DOI: 10.1080/1536383X.2017.1350173.
  • Cataldo, F.; Iglesias-Groth, S.; Prata, M. Neutron Bombardment of Lithium Bis (Oxalato) Borate: LiBOB. J. Radioanal. Nucl. Chem. 2017, 313, 239–247. DOI: 10.1007/s10967-017-5285-z.
  • Cataldo, F. A Raman Study on Radiation-Damaged Graphite by γ-Rays. Carbon 2000, 38, 634–636. DOI: 10.1016/S0008-6223(00)00007-5.
  • Cataldo, F.; Ursini, O.; Nasillo, G.; Caponetti, E.; Carbone, M.; Valentini, F.; Palleschi, G.; Braun, T. Thermal Properties, Raman Spectroscopy and TEM Images of Neutron-Bombarded Graphite. Fullerenes Nanot. Carbon Nanostruct. 2013, 21, 634–643. DOI: 10.1080/1536383X.2012.654533.
  • Cataldo, F. On the Action of γ Radiation on Solid C60 and C70 Fullerenes: A Comparison with Graphite Irradiation. Fullerenes Nanot. Carbon. Nanostruct. 2000, 8, 577–593.
  • Cataldo, F.; Baratta, G. A.; Strazzulla, G. He+ Ion Bombardment of C60 Fullerene: An FT-IR and Raman Study. Fullerenes Nanot. Carbon Nanostruct. 2002, 10, 197–206. DOI: 10.1081/FST-120014734.
  • Cataldo, F.; Baratta, G. A.; Ferini, G.; Strazzulla, G. He+ Ion Bombardment of C70 Fullerene: An FT-IR and Raman Study. Fullerenes Nanot. Carbon Nanostruct. 2003, 11, 191–199. DOI: 10.1081/FST-120024038.
  • Iglesias-Groth, S.; Cataldo, F.; Hafez, Y. Neutron Bombardment of C60 and C70 Fullerenes: A Spectroscopic and Calorimetric Study. Fullerenes Nanot. Carbon Nanostruct. 2016, 24, 547–554. DOI: 10.1080/1536383X.2016.1204602.
  • Cataldo, F.; Angelini, G.; Revay, Z.; Osawa, E.; Braun, T. Wigner Energy of Nanodiamond Bombarded with Neutrons or Irradiated with γ Radiation. Fullerenes Nanot. Carbon Nanostruct. 2014, 22, 861–865. DOI: 10.1080/1536383X.2013.858131.
  • Cataldo, F.; Iglesias-Groth, S.; Hafez, Y.; Angelini, G. Neutron Bombardment of Single Wall Carbon Nanohorn (SWCNH): DSC Determination of the Stored Wigner-Szilard Energy. J. Radioanal. Nucl. Chem. 2014, 299, 1955–1963. DOI: 10.1007/s10967-013-2893-0.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.