582
Views
24
CrossRef citations to date
0
Altmetric
Original Articles

Carbon monoxide and formic acid electrooxidation study on Au decorated Pd catalysts prepared via microwave assisted polyol method

, , &
Pages 545-552 | Received 23 Dec 2018, Accepted 28 Apr 2019, Published online: 27 May 2019

References

  • Ulas, B.; Caglar, A.; Sahin, O.; Kivrak, H. Composition Dependent Activity of PdAgNi Alloy Catalysts for Formic Acid Electrooxidation. J. Colloid Interface Sci. 2018, 532, 47–57. DOI: 10.1016/j.jcis.2018.07.120.
  • Zhou, X.; Huang, Y.; Xing, W.; Liu, C.; Liao, J.; Lu, T. High-Quality Hydrogen from the Catalyzed Decomposition of Formic Acid by Pd–Au/C and Pd–Ag/C. Chem. Commun. 2008, 30, 3540–3542. DOI: 10.1039/b803661f.
  • Caglar, A.; Sahan, T.; Cogenli, M. S.; Yurtcan, A. B.; Aktas, N.; Kivrak, H. A Novel Central Composite Design Based Response Surface Methodology Optimization Study for the Synthesis of Pd/CNT Direct Formic Acid Fuel Cell Anode Catalyst. Int. J. Hydrogen Energy 2018, 43, 11002–11011. DOI: 10.1016/j.ijhydene.2018.04.208.
  • Zhang, J.; Chen, M.; Li, H.; Li, Y.; Ye, J.; Cao, Z.; Fang, M.; Kuang, Q.; Zheng, J.; Xie, Z.; et al. Stable Palladium Hydride as a Superior Anode Electrocatalyst for Direct Formic Acid Fuel Cells. Nano Energy 2018, 44, 127–134. DOI: 10.1016/j.nanoen.2017.11.075.
  • Wang, F.; Xue, H.; Tian, Z.; Xing, W.; Feng, L. Fe2P as a Novel Efficient Catalyst Promoter in Pd/C System for Formic Acid Electro-Oxidation in Fuel Cells Reaction. J. Power Sources 2018, 375, 37–42. DOI: 10.1016/j.jpowsour.2017.11.055.
  • Zhang, R.; Peng, M.; Ling, L.; Wang, B. PdIn Intermetallic Material with Isolated Single-Atom Pd Sites–A Promising Catalyst for Direct Formic Acid Fuel Cell. Chem. Eng. Sci. 2019, 199, 64–78.
  • Sahin, A. The Development of Speek/Pva/Teos Blend Membrane for Proton Exchange Membrane Fuel Cells. Electrochim. Acta 2018, 271, 127–136. DOI: 10.1016/j.electacta.2018.03.145.
  • Şahin, A.; Ar, İ. Synthesis, Characterization and Fuel Cell Performance Tests of Boric Acid and Boron Phosphate Doped, Sulphonated and Phosphonated Poly(Vinyl Alcohol) Based Composite Membranes. J. Power Sources 2015, 288, 426–433. DOI: 10.1016/j.jpowsour.2015.03.188.
  • Olu, P.-Y.; Ohnishi, T.; Ayato, Y.; Mochizuki, D.; Sugimoto, W. Insights into the Enhanced Tolerance to Carbon Monoxide on Model Tungsten Trioxide-Decorated Polycrystalline Platinum Electrode. Electrochem. Commun. 2016, 71, 69–72. DOI: 10.1016/j.elecom.2016.08.008.
  • Sarma, P.; et al. Influence of Key Parameters of Pulsed Oxidation Technique on the Mitigation of Carbon Monoxide Poisoning in a Polymer Electrolyte Fuel Cell. In Meeting Abstracts. The Electrochemical Society, 2018.
  • Wang, T.; Chen, Z.; Yu, C.; Sheng, T. Constructing Canopy-Shaped Molecular Architectures to Create Local Pt Surface Sites with High Tolerance to H2S and CO for Hydrogen Electrooxidation. Energy Environ. Sci. 2018, 11, 166–171. DOI: 10.1039/C7EE02641B.
  • Modibane, K. D.; Lototskyy, M.; Davids, M. W.; Williams, M.; Hato, M. J.; Molapo, K. M. Influence of co-Milling with Palladium Black on Hydrogen Sorption Performance and Poisoning Tolerance of Surface Modified AB5-Type Hydrogen Storage Alloy. J. Alloys Comp. 2018, 750, 523–529. DOI: 10.1016/j.jallcom.2018.04.003.
  • Yan, H.; Jiao, Y.; Wu, A.; Tian, C.; Wang, L.; Zhang, X.; Fu, H. Synergism of Molybdenum Nitride and Palladium for High-Efficiency Formic Acid Electrooxidation. J. Mater. Chem. A. 2018, 6, 7623–7630. DOI: 10.1039/C8TA02488J.
  • Xiong, Y.; Xin, P.; Chen, W.; Wang, Y.; Zhang, S.; Ren, H.; Rong, H.; Zheng, X.; Chen, C.; Peng, Q.; et al. PtAl Truncated Octahedron Nanocrystals for Improved Formic Acid Electrooxidation. Chem. Commun. 2018, 54, 3951–3954. DOI: 10.1039/C8CC00970H.
  • Luque, G. C.; de Chialvo, M. R. G.; Chialvo, A. C. Intermetallic Junction Contribution to the CO Electrooxidation on a Pt/Au Electrode: The Excess Voltammetric Current. J. Solid State Electrochem. 2016, 20, 1209–1214. DOI: 10.1007/s10008-015-2987-4.
  • Yang, F.; Zhang, Y.; Liu, P.-F.; Cui, Y.; Ge, X.-R.; Jing, Q.-S. Pd–Cu Alloy with Hierarchical Network Structure as Enhanced Electrocatalysts for Formic Acid Oxidation. Int. J. Hydrogen Energy 2016, 41, 6773–6780. DOI: 10.1016/j.ijhydene.2016.02.145.
  • Zhang, G.; Wang, Y.; Wang, X.; Chen, Y.; Zhou, Y.; Tang, Y.; Lu, L.; Bao, J.; Lu, T. Preparation of Pd–Au/C Catalysts with Different Alloying Degree and Their Electrocatalytic Performance for Formic Acid Oxidation. Appl. Catal. B: Environ. 2011, 102, 614–619. DOI: 10.1016/j.apcatb.2010.12.049.
  • Choi, B.-S.; Song, J.; Song, M.; Goo, B. S.; Lee, Y. W.; Kim, Y.; Yang, H.; Han, S. W. Core–Shell Engineering of Pd–Ag Bimetallic Catalysts for Efficient Hydrogen Production from Formic Acid Decomposition. ACS Catal. 2019, 9, 819–826. DOI: 10.1021/acscatal.8b04414.
  • Ortiz-Ortega, E.; Carrera-Cerritos, R.; Arjona, N.; Guerra-Balcázar, M.; Cuevas-Muñiz, F. M.; Arriaga, L. G.; Ledesma-García, J. Pd Nanostructures with High Tolerance to CO Poisoning in the Formic Acid Electrooxidation Reaction. Proc. Chem. 2014, 12, 9–18. DOI: 10.1016/j.proche.2014.12.035.
  • Gu, X.; Lu, Z.-H.; Jiang, H.-L.; Akita, T.; Xu, Q. Synergistic Catalysis of Metal-Organic Framework-Immobilized Au-Pd Nanoparticles in Dehydrogenation of Formic Acid for Chemical Hydrogen Storage. J. Am. Chem. Soc. 2011, 133, 11822–11825. DOI: 10.1021/ja200122f.
  • Karatas, Y.; Bulut, A.; Yurderi, M.; Ertas, I. E.; Alal, O.; Gulcan, M.; Celebi, M.; Kivrak, H.; Kaya, M.; Zahmakiran, M.; et al. PdAu-MnOx Nanoparticles Supported on Amine-Functionalized SiO2 for the Room Temperature Dehydrogenation of Formic Acid in the Absence of Additives. Appl. Catal. B-Environ. 2016, 180, 586–595. DOI: 10.1016/j.apcatb.2015.06.060.
  • Qin, Y-l.; Wang, J-w.; Wu, Y-m.; Wang, L-m. Improved Hydrogen Production from Formic Acid under Ambient Conditions Using a PdAu Catalyst on a Graphene Nanosheets-Carbon Black Support. RSC Adv. 2014, 4, 30068–30073. DOI: 10.1039/C4RA05379F.
  • Zhang, Z.; Cao, S.-W.; Liao, Y.; Xue, C. Selective Photocatalytic Decomposition of Formic Acid over AuPd Nanoparticle-Decorated TiO2 Nanofibers toward High-Yield Hydrogen Production. Appl. Catal. B-Environ. 2015, 162, 204–209. DOI: 10.1016/j.apcatb.2014.06.055.
  • Lv, G.; Wang, C.; Chi, K.; Liu, H.; Wang, P.; Ma, H.; Qu, W.; Tian, Z. Effects of Pt Site Distributions on the Catalytic Performance of Pt/SAPO-11 for n-Dodecane Hydroisomerization. Catal. Today 2018, 316, 43–50. DOI: 10.1016/j.cattod.2018.04.072.
  • Zhai, C.; Zhang, H.; Hu, J.; Zeng, L.; Xue, M.; Du, Y.; Zhu, M. Enhanced Formic Acid Electrooxidation Reaction Enabled by 3D PtCo Nanodendrites Electrocatalyst. J. Alloys Comp. 2019, 774, 274–281. DOI: 10.1016/j.jallcom.2018.09.357.
  • Chang Xie, W.; Ling, Y.; Zhang, Y. Z.; Pan, H.; Liu, G. K.; Tang, J. In-Situ Electrochemical Surface-Enhanced Raman Spectroscopy Study of Formic Acid Electrooxidation at Variable Temperatures by High-Frequency Heating Technology. Electrochim. Acta. 2018, 281, 323–328. DOI: 10.1016/j.electacta.2018.05.167.
  • Perales-Rondón, J. V.; Busó-Rogero, C.; Solla-Gullón, J.; Herrero, E.; Feliu, J. M. Formic Acid Electrooxidation on Thallium Modified Platinum Single Crystal Electrodes. Electroanal. Chem. 2017, 800, 82–88. DOI: 10.1016/j.jelechem.2016.09.020.
  • Bulut, A.; Yurderi, M.; Alal, O.; Kivrak, H.; Kaya, M.; Zahmakiran, M. Synthesis, Characterization, and Enhanced Formic Acid Electrooxidation Activity of Carbon Supported MnOx Promoted Pd Nanoparticles. Adv. Powder Technol. 2018, 29, 1409–1416. DOI: 10.1016/j.apt.2018.03.003.
  • Chang, J.; Li, S.; Feng, L.; Qin, X.; Shao, G. Effect of Carbon Material on Pd Catalyst for Formic Acid Electrooxidation Reaction. J. Power Sources 2014, 266, 481–487. DOI: 10.1016/j.jpowsour.2014.05.043.
  • Long, Y.; Zhang, Z.; Wu, Z.; Su, J.; Lv, X.; Wen, Y. Microwave-Assisted Polyol Synthesis of LiMnPO4/C and Its Use as a Cathode Material in Lithium-Ion Batteries. Particuology 2017, 33, 42–49. DOI: 10.1016/j.partic.2016.10.006.
  • Li, M.; Wang, M.; Zhu, L.; Li, Y.; Yan, Z.; Shen, Z.; Cao, X. Facile Microwave Assisted Synthesis of N-Rich Carbon Quantum Dots/Dual-Phase TiO2 Heterostructured Nanocomposites with High Activity in CO2 Photoreduction. Appl. Catal. B: Environ. 2018, 231, 269–276. DOI: 10.1016/j.apcatb.2018.03.027.
  • Fei, H.; Dong, J.; Wan, C.; Zhao, Z.; Xu, X.; Lin, Z.; Wang, Y.; Liu, H.; Zang, K.; Luo, J.; et al. Microwave‐Assisted Rapid Synthesis of Graphene‐Supported Single Atomic Metals. Adv. Mater. 2018, 30, 1802146. DOI: 10.1002/adma.201802146.
  • Tian, X.; Gao, Q.; Zhang, H.; Li, Z.; Xiao, H.; Zhang, Q.; Ma, L. Uniform Small-Sized MoS2 from Novel Solution-Based Microwave-Assisted Method with Exceptional Reversible Lithium Storage Properties. Nanoscale 2018, 10, 15222–15228. DOI: 10.1039/C8NR02833H.
  • Burakova, E. A.; Dyachkova, T. P.; Rukhov, A. V.; Tugolukov, E. N.; Galunin, E. V.; Tkachev, A. G.; Basheer, A. A.; Ali, I. Novel and Economic Method of Carbon Nanotubes Synthesis on a Nickel Magnesium Oxide Catalyst Using Microwave Radiation. J. Mol. Liq. 2018, 253, 340–346. DOI: 10.1016/j.molliq.2018.01.062.
  • de Carvalho, J. M.; et al. Persistent Luminescence Warm-Light LEDs Based on Ti-Doped RE 2O2S Materials Prepared by Rapid and Energy-Saving Microwave-Assisted Synthesis. J. Mater. Chem. C 2018, 6, 8897–8905.
  • Bulut, A.; Yurderi, M.; Karatas, Y.; Say, Z.; Kivrak, H.; Kaya, M.; Gulcan, M.; Ozensoy, E.; Zahmakiran, M. MnOx-Promoted PdAg Alloy Nanoparticles for the Additive-Free Dehydrogenation of Formic Acid at Room Temperature. ACS Catalysis 2015, 5, 6099–6110. DOI: 10.1021/acscatal.5b01121.
  • Qin, Y.-H.; Jiang, Y.; Niu, D.-F.; Zhang, X.-S.; Zhou, X.-G.; Niu, L.; Yuan, W.-K. Carbon nanofiber supported bimetallic PdAu nanoparticles for formic acid electrooxidation. Journal of Power Sources 2012, 215, 130–134. DOI: 10.1016/j.jpowsour.2012.05.008.
  • Calderón, J. C.; García, G.; Querejeta, A.; Alcaide, F.; Calvillo, L.; Lázaro, M. J.; Rodríguez, J. L.; Pastor, E. Carbon monoxide and methanol oxidations on carbon nanofibers supported Pt–Ru electrodes at different temperatures. Electrochimica Acta 2015, 186, 359–368. DOI: 10.1016/j.electacta.2015.09.121.
  • Gu, X.; Lu, Z.-H.; Jiang, H.-L.; Akita, T.; Xu, Q. Synergistic Catalysis of Metal–Organic Framework-Immobilized Au–Pd Nanoparticles in Dehydrogenation of Formic Acid for Chemical Hydrogen Storage. Journal of the American Chemical Society 2011, 133, 11822–11825. DOI: 10.1021/ja200122f.
  • Yu, W.-Y.; Mullen, G. M.; Flaherty, D. W.; Mullins, C. B. Selective Hydrogen Production from Formic Acid Decomposition on Pd–Au Bimetallic Surfaces. Journal of the American Chemical Society 2014, 136, 11070–11078. DOI: 10.1021/ja505192v.
  • Shao, M.; Odell, J. H.; Choi, S.-I.; Xia, Y. Electrochemical surface area measurements of platinum- and palladium-based nanoparticles. Electrochemistry Communications 2013, 31, 46–48. DOI: 10.1016/j.elecom.2013.03.011.
  • Łukaszewski, M.; Soszko, M.; Czerwiński, A. Electrochemical Methods of Real Surface Area Determination of Noble Metal Electrodes–an Overview. Int. J. Electrochem. Sci. 2016, 11, 4442–4469.
  • Binninger, T.; Fabbri, E.; Kötz, R.; Schmidt, T. Determination of the electrochemically active surface area of metal-oxide supported platinum catalyst. Journal of The Electrochemical Society 2014, 161, H121–H128.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.