149
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Experiment on lift-off characteristics of butane jet flame in vitiated co-flow

, , , , &
Pages 553-558 | Received 28 Feb 2019, Accepted 05 May 2019, Published online: 21 May 2019

References

  • Cavaliere, A.; Joannon, M. D. Mild Combustion. Progress in Energy & Combustion Science 2004, 30, 329–366. DOI: 10.1016/j.pecs.2004.02.003.
  • Wunning, J. Flameless Combustion in Thermal Process Technology. Second International Seminar on High Temperature Combustion, Stockholm, Sweden, 2000, pp 17–18.
  • Niioka, T. Fundamentals and Applications of High-Temperature Air Combustion; Tohoku Univ.: Sendai (JP), 1999.
  • Niioka, T. Impact of Knowledge Gained from the HiCOT Project on Development of Combustors. Proceedings, 2005, pp 1–4.
  • Arghode, V. K.; Gupta, A. K. Development of High Intensity CDC Combustor for Gas Turbine Engines. Appl. Energy 2011, 88, 963–973. DOI: 10.1016/j.apenergy.2010.07.038.
  • Blarino, L.; Fantuzzi, M.; Malfa, E.; U. In, Z. Tenova Flexytech burners: Flameless Combustion for very low NOx Reheating Furnaces, Boilers. Proceedings of the HITAC Conference, Phuket, Thailand, 2007.
  • Schaffel, N.; Mancini, M.; Szle¸K, A.; Weber, R. Mathematical Modeling of MILD Combustion of Pulverized Coal. Combust. Flame. 2009, 156, 1771–1784. DOI: 10.1016/j.combustflame.2009.04.008.
  • Zhang, H.; Yue, G.; Lu, J.; Jia, Z.; Mao, J.; Fujimori, T.; Suko, T.; Kiga, T. Development of High Temperature Air Combustion Technology in Pulverized Fossil Fuel Fired Boilers. Proc. Combust. Inst. 2007, 31, 2779–2785. DOI: 10.1016/j.proci.2006.07.135.
  • Schaffel-Mancini, N.; Mancini, M.; Szlek, A.; Weber, R. Novel Conceptual Design of a Supercritical Pulverized Coal Boiler Utilizing High Temperature Air Combustion (HTAC) Technology. Energy 2010, 35, 2752–2760. DOI: 10.1016/j.energy.2010.02.014.
  • Zhu, S.; Pozarlik, A.; Roekaerts, D.; Rodrigues, H. C.; van der Meer, T. Numerical Investigation towards HiTAC Conditions in Laboratory-Scale Ethanol Spray Combustion. Fuel 2018, 211, 375–389. DOI: 10.1016/j.fuel.2017.09.002.
  • Demirbas, A. Fuel Properties of Hydrogen, Liquefied Petroleum Gas (LPG), and Compressed Natural Gas (CNG) for Transportation. Energy Sources 2002, 24, 601–610. DOI: 10.1080/00908312.2002.11877434.
  • Baker, R. W.; Lokhandwala, K. Natural Gas Processing with Membranes: An Overview. Ind. Eng. Chem. Res. 2008, 47, 2109–2121. DOI: 10.1021/ie071083w.
  • Klimstra. Interchangeability of Gaseous fuels – The Importance of the Wobbe-Index. SAE Technical Paper 861578, 1986.
  • Capata, R.; Saracchini, M. Experimental Campaign Tests on Ultra Micro Gas Turbines, Fuel Supply Comparison and Optimization. Energies 2018, 11, 799. DOI: 10.3390/en11040799.
  • Milcarek, R. J.; Ahn, J. Micro-Tubular Flame-Assisted Fuel Cells Running Methane, Propane and Butane: On Soot, Efficiency and Power Density. Energy 2019, 169, 776–782. DOI: 10.1016/j.energy.2018.12.098.
  • Shuanghui, X.; Fan, W.; Xiangyuan, L. First-and Second-Order Local and Global Sensitivity Analyses on Ignition Delay Times of Four Typical Fuels. Acta Physico-Chim. Sin. 2018, 35, 167–181.
  • Wu, H.; Shi, Z.; Lee, C-f.; Zhang, H.; Xu, Y. Experimental and Kinetic Study on Ignition of DME/n-Butane Mixtures under High Pressures on a Rapid Compression Machine. Fuel 2018, 225, 35–46. DOI: 10.1016/j.fuel.2018.03.129.
  • Kneba, Z. The Possibility of Co-Combustion of Gaseous Fuel in Compression Ignition Engines. Amm. 2016, 831, 256–262. DOI: 10.4028/www.scientific.net/AMM.831.256.
  • Alfazazi, A.; Al-Omier, A.; Secco, A.; Selim, H.; Ju, Y.; Sarathy, S. M. Cool Diffusion Flames of Butane Isomers Activated by Ozone in the Counterflow. Combustion & Flame 2018, 191, 175–186. DOI: 10.1016/j.combustflame.2017.12.034.
  • Giurcan, V.; Mitu, M.; Razus, D.; Oancea, D. Pressure and Temperature Influence on Propagation Indices of n-Butane–Air Gaseous Mixtures. Process Saf. Environ. Protect. 2017, 111, 94–101. DOI: 10.1016/j.psep.2017.06.020.
  • Prince, J. C.; Treviño, C.; Williams, F. A. A Reduced Reaction Mechanism for the Combustion of n-Butane. Combust.Flame 2016, 175, 27–33. DOI: 10.1016/j.combustflame.2016.06.033.
  • Prince, J. C.; Williams, F. A. Short Chemical-Kinetic Mechanisms for Low-Temperature Ignition of Propane and Ethane. Combust.Flame 2012, 159, 2336–2344. DOI: 10.1016/j.combustflame.2012.02.012.
  • Prince, J. C.; Williams, F. A. Revised Short Mechanism for the Low-Temperature Ignition of n-Heptane for a Wider Pressure Range. Fuel 2015, 150, 730–731. DOI: 10.1016/j.fuel.2015.02.029.
  • Healy, D.; Kopp, M. M.; Polley, N. L.; Petersen, E. L.; Bourque, G.; Curran, H. J. Methane/n-Butane Ignition Delay Measurements at High Pressure and Detailed Chemical Kinetic Simulations. Combust. Flame 2010, 157, 1540–1551. DOI: 10.1016/j.combustflame.2010.01.011.
  • Manion, J. A.; Sheen, D. A.; Awan, I. A. Evaluated Kinetics of the Reactions of H and CH3 with n-Alkanes: Experiments with n-Butane and a Combustion Model Reaction Network Analysis. J. Phys. Chem. A 2015, 119, 7637–7658. DOI: 10.1021/acs.jpca.5b01004.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.