386
Views
8
CrossRef citations to date
0
Altmetric
Reviews

Improved photoresponse performances of V2O5 and rGO

, , , , , & show all
Pages 566-571 | Received 10 Mar 2019, Accepted 09 May 2019, Published online: 27 May 2019

References

  • Koppens, F. H. L.; Mueller, T.; Avouris, P.; Ferrari, A. C.; Vitiello, M. S.; Polini, M. Photodetectors Based on Graphene, Other Two-Dimensional Materials and Hybrid Systems. Nature Nanotech. 2014, 9, 780–793. DOI: 10.1038/nnano.2014.215.
  • Gao, Z.; Jin, Z.; Ji, Q.; Tang, Y.; Kong, J.; Zhang, L.; Li, Y. Crumpled Graphene Prepared by a Simple Ultrasonic Pyrolysis Method for Fast Photodetection. Carbon 2018, 128, 117–124. DOI: 10.1016/j.carbon.2017.11.082.
  • Chen, H.; Liu, K.; Hu, L.; Al-Ghamdi, A.; Fang, X. New Concept Ultraviolet Photodetectors. Materials Today 2015, 18, 493–502. DOI: 10.1016/j.mattod.2015.06.001.
  • Fu, W. B.; Shang, G. L.; Gong, X. X.; Zhang, L. D.; Fei, G. Preparation of Large Scale and Highly Ordered Vanadium Pentoxide (V2O5) Nanowires Array towards High Performance Photodetectors. J. Mater. Chem. C. 2017, 5, 1471–1478. DOI: 10.1039/C6TC04894C.
  • Tian, B.; Kempa, T. J.; Lieber, C. M. Single Nanowire Photovoltaics. Chem. Soc. Rev. 2009, 38, 16–24. DOI: 10.1039/b718703n.
  • Gong, B.; Shi, T.; Zhu, W.; Liao, G.; Li, X.; Huang, J.; Zhou, T.; Tang, Z. UV Irradiation-Assisted Ethanol Detection Operated by the Gas Sensor Based on ZnO Nanowires/Optical Fiber Hybrid Structure. Sensors Actuat B-Chem. 2017, 245, 821–827. DOI: 10.1016/j.snb.2017.01.187.
  • Warkocki, W.; El-Safty, S. A.; Warkocki, W.; Shenashen, M.; Elshehy, E.; Yamaguchi, H.; Akhtar, N. Photo-Induced Recovery, Optical Detection, and Separation of Noxious SeO32− Using Mesoporous Nanotube Hybrid Membrane. J. Mater. Chem. A. 2015, 3, 17578–17589. DOI: 10.1039/C5TA02827B.
  • Tang, C.; Jiang, C.; Bi, S.; Song, J. Photoelectric Property Modulation by Nanoconfinement in the Longitude Direction of Short Semiconducting Nanorods. ACS Appl Mater Interfaces 2016, 8, 11001–11007. DOI: 10.1021/acsami.6b02497.
  • Xie, X.; Shen, G. Single-Crystalline In2S3 Nanowire-Based Flexible Visible-Light Photodetectors with an Ultra-High Photoresponse. Nanoscale 2015, 7, 5046–5052. DOI: 10.1039/c5nr00410a.
  • Zhou, X.; Gan, L.; Zhang, Q.; Xiong, X.; Li, H.; Zhong, Z.; Han, J.; Zhai, T. High Performance near-Infrared Photodetectors Based on Ultrathin SnS Nanobelts Grown via Physical Vapor Deposition. J. Mater. Chem. C. 2016, 4, 2111–2116. DOI: 10.1039/C5TC04410C.
  • André, R.; Natálio, F.; Humanes, M.; Leppin, J.; Heinze, K.; Wever, R.; Schröder, H.-C.; Werner, E. G.; Müller.; Tremel, W. V2O5 Nanowires with an Intrinsic Peroxidase-Like Activity. Adv. Funct. Mater. 2011, 21, 501–509. DOI: 10.1002/adfm.201001302.
  • Xing, X.; Zhang, X.; Zhang, K.; Jin, L.; Cao, Q. Preparation of Large-Sized Graphene from Needle Coke and the Adsorption for Malachite Green with Its Graphene Oxide. Fuller. Nanotub. Car. N. 2019, 27, 97–105.
  • Putz, M. V.; Svera, P.; Putz, A.-M.; Cataldo, F. Quantum Particles on Graphenic Systems. Part 2. Bondons by Absorption Raman Spectra. Fuller. Nanotub. Car. N. 2018, 26, 330–341. DOI: 10.1080/1536383X.2018.1433162.
  • Ates, M.; Caliskan, S.; Ozten, E. A Ternary Nanocomposite of Reduced Graphene Oxide, Ag Nanoparticle and Polythiophene Used for Supercapacitors. Fuller. Nanotub. Car. N. 2018, 26, 360–369. DOI: 10.1080/1536383X.2018.1438414.
  • Vaziri, S.; Lupina, G.; Henkel, C.; Smith, A. D.; Ostling, M.; Dabrowski, J.; Lippert, G.; Mehr, W.; Lemme, M. C. A Graphene-Based Hot Electron Transistor. Nano Lett. 2013, 13, 1435–1439. DOI: 10.1021/nl304305x.
  • Cao, Y.; Yang, H.; Zhao, Y.; Zhang, Y.; Ren, T.; Jin, B.; He, J.; Sun, J. Fully Suspended Reduced Graphene Oxide Photodetector with Annealing Temperature-Dependent Broad Spectral Binary Photoresponses. ACS Photon. 2017, 4, 2797–2806. DOI: 10.1021/acsphotonics.7b00768.
  • Liu, X.; Qi, X.; Zhang, Z.; Ren, L.; Liu, Y.; Meng, L.; Huang, K.; Zhong, J. One-Step Electrochemical Deposition of Nickel Sulfide/Graphene and Its Use for Supercapacitors. Ceram. Int. 2014, 40, 8189–8193. DOI: 10.1016/j.ceramint.2014.01.015.
  • Han, W.; Ren, L.; Qi, X.; Liu, Y.; Wei, X.; Huang, Z.; Zhong, J. Synthesis of CdS/ZnO/Graphene Composite with High-Efficiency Photoelectrochemical Activities under Solar Radiation. Appl. Surf. Sci. 2014, 299, 12–18. DOI: 10.1016/j.apsusc.2014.01.170.
  • Ito, Y.; Zhang, W.; Li, J.; Chang, H.; Liu, P.; Fujita, T.; Tan, Y.; Yan, F.; Chen, M. 3D Bicontinuous Nanoporous Reduced Graphene Oxide for Highly Sensitive Photodetectors. Adv. Funct. Mater. 2016, 26, 1271–1277. DOI: 10.1002/adfm.201504146.
  • Chitara, B.; Panchakarla, L.; Krupanidhi, S.; Rao, C. Infrared Photodetectors Based on Reduced Graphene Oxide and Graphene Nanoribbons. Adv. Mater. 2011, 23, 5419–5424. DOI: 10.1002/adma.201101414.
  • Candini, A.; Martini, L.; Chen, Z.; Mishra, N.; Convertino, D.; Coletti, C.; Narita, A.; Feng, X.; Müllen, K.; Affronte, M. High Photoresponsivity in Graphene Nanoribbon Field Effect Transistor Devices Contacted with Graphene Electrodes. J. Phys. Chem. C 2017, 121, 10620–10625. DOI: 10.1021/acs.jpcc.7b03401.
  • Tao, L.; Chen, Z.; Li, X.; Yan, K.; Xu, J.-B. Hybrid Graphene Tunneling Photoconductor with Interface Engineering towards Fast Photoresponse and High Responsivity. NPJ 2D Mater. Appl. 2017, 1, 19.
  • Chang, P. H.; Li, C. S.; Fu, F. Y.; Huang, K. Y.; Chou, A. S.; Wu, C. I. Ultrasensitive Photoresponsive Devices Based on Graphene/BiI3 Van Der Waals Epitaxial Heterostructures. Adv. Funct. Mater. 2018, 28, 1800179–1800190. DOI: 10.1002/adfm.201800179.
  • Lin, Y.; Zhang, K.; Chen, W.; Liu, Y.; Geng, Z.; Zeng, J.; Pan, N.; Yan, L.; Wang, X.; Hou, J. G. Dramatically Enhanced Photoresponse of Reduced Graphene Oxide with Linker-Free Anchored CdSe Nanoparticles. ACS Nano. 2010, 4, 3033–3038. DOI: 10.1021/nn100134j.
  • Tian, W.; Liu, D.; Cao, F.; Li, L. Hybrid Nanostructures for Photodetectors. Adv. Opt. Mater. 2017, 5, 1600468–1600484. DOI: 10.1002/adom.201600468.
  • Chitara, B.; Krupanidhi, S. B.; Rao, C. N. R. Solution Processed Reduced Graphene Oxide Ultraviolet Detector. Appl. Phys. Lett. 2011, 99, 113114–113117. DOI: 10.1063/1.3640222.
  • Abd-Alghafour, N. M.; Ahmed, N. M.; Hassan, Z. Fabrication and Characterization of V2O5 Nanorods Based Metal-Semiconductor-Metal Photodetector. Sensors Actuat. A-Phys. 2016, 250, 250–257. DOI: 10.1016/j.sna.2016.09.001.
  • Zhai, T.; Liu, H.; Li, H.; Fang, X.; Liao, M.; Li, L.; Zhou, H.; Koide, Y.; Bando, Y.; Golberg, D. Centimeter-Long V2O5 Nanowires: From Synthesis to Field-Emission, Electrochemical, Electrical Transport, and Photoconductive Properties. Adv. Mater. Weinheim. 2010, 22, 2547–2552. DOI: 10.1002/adma.200903586.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.