192
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

The electrochemical performance of the N-doped graphene aerogels and nickel foam composite electrode prepared by one-pot hydrothermal method

, &
Pages 582-590 | Received 13 Apr 2019, Accepted 11 May 2019, Published online: 27 May 2019

References

  • Cao, X.; Shi, Y.; Shi, W.; Lu, G.; Huang, X.; Yan, Q.; Zhang, Q.; Zhang, H. Preparation of Novel 3d Graphene Networks for Supercapacitor Applications. Small 2011, 7, 3163–3168. DOI:10.1002/smll.201100990.
  • Zhang, L.; Shi, G. Preparation of Highly Conductive Graphene Hydrogels for Fabricating Supercapacitors with High Rate Capability. J. Phys. Chem. C 2011, 115, 17206–17212. DOI:10.1021/jp204036a.
  • Sun, Y.; Wu, Q.; Shi, G. Graphene Based New Energy Materials. Energy Environ. Sci. 2011, 4, 1113–1132. DOI:10.1039/c0ee00683a.
  • Stoller, M. D.; Park, S.; Zhu, Y.; An, J.; Ruoff, R. S. Graphene-Based Ultracapacitors. Nano Lett. 2008, 8, 3498–3502. DOI:10.1021/nl802558y.
  • Chu, H.; Zhang, F.; Pei, L.; Cui, Z.; Shen, J.; Ye, M. Ni, Co and Mn Doped SnS2-Graphene Aerogels for Supercapacitors. J. Alloys Compd. 2018, 767, 583–591. DOI:10.1016/j.jallcom.2018.07.126.
  • Worsley, M. A.; Pauzauskie, P. J.; Olson, T. Y.; Biener, J.; Satcher, J. H., Jr.; Baumann, T. F. Synthesis of Graphene Aerogel with High Electrical Conductivity. J. Am. Chem. Soc. 2010, 132, 14067–14069. DOI:10.1021/ja1072299.
  • Qiu, L.; Liu, J. Z.; Chang, S. L. Y.; Wu, Y.; Li, D. Biomimetic Superelastic Graphene-Based Cellular Monoliths. Nat. Commun. 2012, 3, 1241.
  • Fan, Z.; Tng, D. Z. Y.; Lim, C. X. T.; Liu, P.; Son Truong, N.; Xiao, P.; Marconnet, A.; Lim, C. Y. H.; Duong, H. M. Thermal and Electrical Properties of Graphene/Carbon Nanotube Aerogels. Colloids Surf. A. Physicochem. Eng. Asp. 2014, 445, 48–53. DOI:10.1016/j.colsurfa.2013.12.083.
  • Xu, Y.; Sheng, K.; Li, C.; Shi, G. Self-Assembled Graphene Hydrogel via a One-Step Hydrothermal Process. ACS Nano. 2010, 4, 4324–4330. DOI:10.1021/nn101187z.
  • Sui, Z. Y.; Meng, Y. N.; Xiao, P. W.; Zhao, Z. Q.; Wei, Z. X.; Han, B. H. Nitrogen-Doped Graphene Aerogels as Efficient Supercapacitor Electrodes and Gas Adsorbents. ACS Appl. Mater. Interfaces 2015, 7, 1431–1438. DOI:10.1021/am5042065.
  • Gigot, A.; Fontana, M.; Pirri, C. F.; Rivolo, P. Graphene/Ruthenium Active Species Aerogel as Electrode for Supercapacitor Applications. Materials 2018, 11, E57.
  • Bi, H.; Lin, T.; Xu, F.; Tang, Y.; Liu, Z.; Huang, F. New Graphene Form of Nanoporous Monolith for Excellent Energy Storage. Nano Lett. 2016, 16, 349–354. DOI:10.1021/acs.nanolett.5b03923.
  • Yang, S.; Deng, B.; Ge, R.; Zhang, L.; Wang, H.; Zhang, Z.; Zhu, W.; Wang, G. Electrodeposition of Porous Graphene Networks on Nickel Foams as Supercapacitor Electrodes with High Capacitance and Remarkable Cyclic Stability. Nanoscale Res. Lett. 2014, 9, 2496.
  • Zhang, S.; Li, Y.; Pan, N. Graphene Based Supercapacitor Fabricated by Vacuum Filtration Deposition. J. Power Sources 2012, 206, 476–482. DOI:10.1016/j.jpowsour.2012.01.124.
  • Huang, H.; Tang, Y.; Xu, L.; Tang, S.; Du, Y. Direct Formation of Reduced Graphene Oxide and 3d Lightweight Nickel Network Composite Foam by Hydrohalic Acids and Its Application for High-Performance Supercapacitors. ACS Appl. Mater. Interfaces 2014, 6, 10248–10257. DOI:10.1021/am501635h.
  • Chen, J.; Sheng, K.; Luo, P.; Li, C.; Shi, G. Graphene Hydrogels Deposited in Nickel Foams for High-Rate Electrochemical Capacitors. Adv. Mater. 2012, 24, 4569–4573. DOI:10.1002/adma.201201978.
  • Ye, S.; Feng, J.; Wu, P. Deposition of Three-Dimensional Graphene Aerogel on Nickel Foam as a Binder-Free Supercapacitor Electrode. ACS Appl. Mater. Interfaces 2013, 5, 7122–7129. DOI:10.1021/am401458x.
  • Wang, F.; Zheng, M.; Ma, L.; Li, Q.; Song, J.; You, Y.; Ma, L.; Shen, W. Nickel Skeleton Three-Dimensional Nitrogen Doped Graphene Nanosheets/Nanoscrolls as Promising Supercapacitor Electrodes. Nanotechnology 2017, 28, 365402.
  • Li, S.; Wang, M.; Lian, Y. Electrochemical Capacitors Based on the Composite of Graphene and Nickel Foam. Sci. China Chem. 2016, 59, 405–411. DOI:10.1007/s11426-016-5559-2.
  • Wan, W.; Zhang, F.; Yu, S.; Zhang, R.; Zhou, Y. Hydrothermal Formation of Graphene Aerogel for Oil Sorption: The Role of Reducing Agent, Reaction Time and Temperature. New J. Chem. 2016, 40, 3040–3046. DOI:10.1039/C5NJ03086B.
  • Fan, Z.; Zhao, Q.; Li, T.; Yan, J.; Ren, Y.; Feng, J.; Wei, T. Easy Synthesis of Porous Graphene Nanosheets and Their Use in Supercapacitors. Carbon 2012, 50, 1699–1703. DOI:10.1016/j.carbon.2011.12.016.
  • Wei, N.; Wang, Q.; Ma, Y.; Ruan, L.; Zeng, W.; Liang, D.; Xu, C.; Huang, L.; Zhao, J. Superelastic Active Graphene Aerogels Dried in Natural Environment for Sensitive Supercapacitor-Type Stress Sensor. Electrochim Acta 2018, 283, 1390–1400. DOI:10.1016/j.electacta.2018.07.093.
  • Tan, Y.; Wu, D.; Wang, T.; Liu, P.; Guo, J.; Jia, D. Facile Synthesis of Functionalized Graphene Hydrogel for High Performance Supercapacitor with High Volumetric Capacitance and Ultralong Cycling Stability. Appl. Surf. Sci. 2018, 455, 683–695. DOI:10.1016/j.apsusc.2018.05.161.
  • Lucchese, M. M.; Stavale, F.; Ferreira, E. H. M.; Vilani, C.; Moutinho, M. V. O.; Capaz, R. B.; Achete, C. A.; Jorio, A. Quantifying Ion-Induced Defects and Raman Relaxation Length in Graphene. Carbon 2010, 48, 1592–1597. DOI:10.1016/j.carbon.2009.12.057.
  • Cançado, L. G.; Takai, K.; Enoki, T.; Endo, M.; Kim, Y. A.; Mizusaki, H.; Jorio, A.; Coelho, L. N.; Magalhães-Paniago, R.; Pimenta, M. A., General Equation for the Determination of the Crystallite Size la of Nanographite by Raman Spectroscopy. Appl. Phys. Lett. 2006, 88, 163106. DOI:10.1063/1.2196057.
  • Fang, Z.; Hu, Y.; Zhang, W.; Ruan, X. Shell-Free Three-Dimensional Graphene-Based Monoliths for the Aqueous Adsorption of Organic Pollutants. Chem. Eng. J. 2017, 316, 24–32. DOI:10.1016/j.cej.2017.01.072.
  • Dato, A.; Lee, Z.; Jeon, K.-J.; Erni, R.; Radmilovic, V.; Richardson, T. J.; Frenklach, M. Clean and Highly Ordered Graphene Synthesized in the Gas Phase. Chem. Commun. 2009, 6095–6097. DOI:10.1039/b911395a.
  • Chen, J.; Li, Y.; Huang, L.; Li, C.; Shi, G. High-Yield Preparation of Graphene Oxide from Small Graphite Flakes via an Improved Hummers Method with a Simple Purification Process. Carbon 2015, 81, 826–834. DOI:10.1016/j.carbon.2014.10.033.
  • Acik, M.; Lee, G.; Mattevi, C.; Pirkle, A.; Wallace, R. M.; Chhowalla, M.; Cho, K.; Chabal, Y. The Role of Oxygen during Thermal Reduction of Graphene Oxide Studied by Infrared Absorption Spectroscopy. J. Phys. Chem. C. 2011, 115, 19761–19781. DOI:10.1021/jp2052618.
  • Kota, M.; Jana, M.; Park, H. S. Improving Energy Density of Supercapacitors Using Heteroatom-Incorporated Three-Dimensional Macro-Porous Graphene Electrodes and Organic Electrolytes. J Power Sources 2018, 399, 83–88. DOI:10.1016/j.jpowsour.2018.07.078.
  • Zhang, C.; Fu, L.; Liu, N.; Liu, M.; Wang, Y.; Liu, Z. Synthesis of Nitrogen-Doped Graphene Using Embedded Carbon and Nitrogen Sources. Adv. Mater. 2011, 23, 1020–1024. DOI:10.1002/adma.201004110.
  • Liu, Y.; Wang, H.; Lin, D.; Zhao, J.; Liu, C.; Xie, J.; Cui, Y. A Prussian Blue Route to Nitrogen-Doped Graphene Aerogels as Efficient Electrocatalysts for Oxygen Reduction with Enhanced Active Site Accessibility. Nano Res. 2017, 10, 1213–1222. DOI:10.1007/s12274-016-1300-x.
  • Xu, H.; Wu, J.; Liu, J.; Chen, Y.; Fan, X. Growth of Cobalt-Nickel Layered Double Hydroxide on Nitrogen-Doped Graphene by Simple co-Precipitation Method for Supercapacitor Electrodes. J. Mater. Sci.: Mater. Electron. 2018, 29, 17234–17244. DOI:10.1007/s10854-018-9817-2.
  • Zhou, X.; Wang, M.; Lian, J.; Lian, Y. Supercapacitors Based on High-Surface-Area Graphene. Sci. China Technol. Sci. 2014, 57, 278–283. DOI:10.1007/s11431-014-5462-z.
  • Xiao, T.; Hu, X.; Heng, B.; Chen, X.; Huang, W.; Tao, W.; Wang, H.; Tang, Y.; Tan, X.; Huang, X. Ni(OH)2 Nanosheets Grown on Graphene-Coated Nickel Foam for High-Performance Pseudocapacitors. J. Alloys Compd. 2013, 549, 147–151. DOI:10.1016/j.jallcom.2012.09.028.
  • Hong, J. Y.; Bak, B. M.; Wie, J. J.; Kong, J.; Park, H. S. Reversibly Compressible, Highly Elastic, and Durable Graphene Aerogels for Energy Storage Devices under Limiting Conditions. Adv. Funct. Mater. 2015, 25, 1053–1062. DOI:10.1002/adfm.201403273.
  • Du, J.; Liu, L.; Yu, Y.; Zhang, L.; Zhang, Y.; Chen, A. Synthesis of Nitrogen Doped Graphene Aerogels Using Solid Supported Strategy for Supercapacitor. Mater Chem Phys 2019, 223, 145–151. DOI:10.1016/j.matchemphys.2018.10.062.
  • Biswas, S.; Drzal, L. T. Multi Layered Nano-Architecture of Variable Sized Graphene Nanosheets for Enhanced Supercapacitor Electrode Performance. ACS Appl. Mater. Interfaces 2010, 2, 2293–2300. DOI:10.1021/am100343a.
  • Chen, C. M.; Zhang, Q.; Yang, M. G.; Huang, C. H.; Yang, Y. G.; Wang, M. Z. Structural Evolution during Annealing of Thermally Reduced Graphene Nanosheets for Application in Supercapacitors. Carbon 2012, 50, 3572–3584. DOI:10.1016/j.carbon.2012.03.029.
  • Zhang, H. B.; Zheng, W. G.; Yan, Q.; Yang, Y.; Wang, J. W.; Lu, Z. H.; Ji, G. Y.; Yu, Z. Z. Electrically Conductive Polyethylene Terephthalate/Graphene Nanocomposites Prepared by Melt Compounding. Polymer 2010, 51, 1191–1196. DOI:10.1016/j.polymer.2010.01.027.
  • Niu, C.; Sichel, E. K.; Hoch, R.; Moy, D.; Tennent, H. High Power Electrochemical Capacitors Based on Carbon Nanotube Electrodes. Appl. Phys. Lett. 1997, 70, 1480–1482. DOI:10.1063/1.118568.
  • Zhang, L. L.; Zhao, X.; Stoller, M. D.; Zhu, Y.; Ji, H.; Murali, S.; Wu, Y.; Perales, S.; Clevenger, B.; Ruoff, R. S. Highly Conductive and Porous Activated Reduced Graphene Oxide Films for High-Power Supercapacitors. Nano Lett. 2012, 12, 1806–1812. DOI:10.1021/nl203903z.
  • Liu, W. W.; Yan, X. B.; Lang, J. W.; Peng, C.; Xue, Q. J. Flexible and Conductive Nanocomposite Electrode Based on Graphene Sheets and Cotton Cloth for Supercapacitor. J. Mater. Chem. 2012, 22, 17245–17253. DOI:10.1039/c2jm32659k.
  • Wang, L.; Li, X.; Guo, T.; Yan, X.; Tay, B. K. Three-Dimensional Ni(OH)2 Nanoflakes/Graphene/Nickel Foam Electrode with High Rate Capability for Supercapacitor Applications. Int. J. Hydrogen Energy 2014, 39, 7876–7884. DOI:10.1016/j.ijhydene.2014.03.067.
  • Zhao, Y.; Hu, C.; Hu, Y.; Cheng, H.; Shi, G.; Qu, L. A Versatile, Ultralight, Nitrogen-Doped Graphene Framework. Angew. Chem. Int. Ed. 2012, 51, 11371–11375. DOI:10.1002/anie.201206554.
  • Fan, Z.; Yan, J.; Zhi, L.; Zhang, Q.; Wei, T.; Feng, J.; Zhang, M.; Qian, W.; Wei, F. A Three-Dimensional Carbon Nanotube/Graphene Sandwich and Its Application as Electrode in Supercapacitors. Adv. Mater. 2010, 22, 3723–3728. DOI:10.1002/adma.201001029.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.