174
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Optical/thermal studies on nanostructures of poly(3-hexylthiophene) and carbon nanotube/graphene precursors

Pages 572-581 | Received 18 Apr 2019, Accepted 12 May 2019, Published online: 27 May 2019

References

  • Heeger, A. J. Bulk Heterojunction Solar Cells: Understanding the Mechanism of Operation. Adv. Mater. 2014, 26, 10–28. DOI:10.1002/adma.201304373.
  • Noriega, R.; Rivnay, J.; Vandewal, K.; Koch, F. P.; Stingelin, N.; Smith, P.; Toney, M. F.; Salleo, A. A General Relationship between Disorder, Aggregation and Charge Transport in Conjugated Polymers. Nat. Mater. 2013, 12, 1038–1044. DOI:10.1038/nmat3722.
  • Xiao, X.; Wang, Z.; Hu, Z.; He, T. Single Crystals of Polythiophene with Different Molecular Conformations Obtained by Tetrahydrofuran Vapor Annealing and Controlling Solvent Evaporation. J. Phys. Chem. B. 2010, 114, 7452–7460. DOI:10.1021/jp911525d.
  • Kim, J. S.; Lee, J. H.; Park, J. H.; Shim, C.; Sim, M.; Cho, K. High‐Efficiency Organic Solar Cells Based on Preformed Poly(3‐Hexylthiophene) Nanowires. Adv. Funct. Mater. 2011, 21, 480–486. DOI:10.1002/adfm.201000971.
  • Lu, L.; Zheng, T.; Wu, Q.; Schneider, A. M.; Zhao, D.; Yu, L. Recent Advances in Bulk Heterojunction Polymer Solar Cells. Chem. Rev. 2015, 115, 12666–12731. DOI:10.1021/acs.chemrev.5b00098.
  • Kim, J. H.; Park, J. H.; Lee, J. H.; Kim, J. S.; Sim, M.; Shim, C.; Cho, K. Bulk Heterojunction Solar Cells Based on Preformed Polythiophene Nanowires via Solubility-Induced Crystallization. J. Mater. Chem. 2010, 20, 7398–7405. DOI:10.1039/c0jm00666a.
  • Kim, M.; Jo, S. B.; Park, J. H.; Cho, K. Flexible Lateral Organic Solar Cells with Core–Shell Structured Organic Nanofibers. Nano Energy 2015, 18, 97–108. DOI:10.1016/j.nanoen.2015.10.007.
  • Liu, F.; Chen, D.; Wang, C.; Luo, K.; Gu, W.; Briseno, A. L.; Hsu, J. W.; Russell, T. P. Molecular Weight Dependence of the Morphology in P3HT:PCBM Solar Cells. ACS Appl. Mater. Interfaces 2014, 6, 19876–19887. DOI:10.1021/am505283k.
  • Bruner, C.; Novoa, F.; Dupont, S.; Dauskardt, R. Decohesion Kinetics in Polymer Organic Solar Cells. ACS Appl. Mater. Interfaces 2014, 6, 21474–21483. DOI:10.1021/am506482q.
  • Lee, J. Y.; Lin, C. J.; Lo, C. T.; Tsai, J. C.; Chen, W. C. Synthesis, Morphology, and Field-Effect Transistor Characteristics of Crystalline Diblock Copolymers Consisted of Poly(3-Hexylthiophene) and Syndiotactic Polypropylene. Macromolecules 2013, 46, 3005–3014. DOI:10.1021/ma400384a.
  • Yu, X.; Xiao, K.; Chen, J.; Lavrik, N. V.; Hong, K.; Sumpter, B. G.; Geohegan, D. B. High-Performance Field-Effect Transistors Based on Polystyrene-b-Poly(3-Hexylthiophene) Diblock Copolymers. ACS Nano 2011, 5, 3559–3567. DOI:10.1021/nn2007964.
  • Liu, H.; Reccius, C. H.; Craighead, H. G. Single Electrospun Regioregular Poly(3-Hexylthiophene) Nanofiber Field-Effect Transistor. Appl. Phys. Lett. 2005, 87, 253106. DOI:10.1063/1.2149980.
  • Lim, J. A.; Kim, J. H.; Qiu, L.; Lee, W. H.; Lee, H. S.; Kwak, D.; Cho, K. Inkjet‐Printed Single‐Droplet Organic Transistors Based on Semiconductor Nanowires Embedded in Insulating Polymers. Adv. Funct. Mater. 2010, 20, 3292–3297. DOI:10.1002/adfm.201000528.
  • Han, T. H.; Lee, Y.; Choi, M. R.; Woo, S. H.; Bae, S. H.; Hong, B. H.; Ahn, J. H.; Lee, T. W. Extremely Efficient Flexible Organic Light-Emitting Diodes with Modified Graphene Anode. Nature Photon. 2012, 6, 105–110. DOI:10.1038/nphoton.2011.318.
  • Burroughes, J. H.; Bradley, D. D.; Brown, A. R.; Marks, R. N.; Mackay, K.; Friend, R. H.; Burns, P. L.; Holmes, A. B. Light-Emitting Diodes Based on Conjugated Polymers. Nature 1990, 347, 539–541. DOI:10.1038/347539a0.
  • Thomas, S. W.; Joly, G. D.; Swager, T. M. Chemical Sensors Based on Amplifying Fluorescent Conjugated Polymers. Chem. Rev. 2007, 107, 1339–1386. DOI:10.1021/cr0501339.
  • Qiu, L.; Lee, W. H.; Wang, X.; Kim, J. S.; Lim, J. A.; Kwak, D.; Lee, S.; Cho, K. Organic Thin‐Film Transistors Based on Polythiophene Nanowires Embedded in Insulating Polymer. Adv. Mater. 2009, 21, 1349–1353. DOI:10.1002/adma.200802880.
  • Bao, Z.; Dodabalapur, A.; Lovinger, A. J. Soluble and Processable Regioregular Poly(3‐Hexylthiophene) for Thin Film Field‐Effect Transistor Applications with High Mobility. Appl. Phys. Lett. 1996, 69, 4108–4110. DOI:10.1063/1.117834.
  • Yang, H.; Shin, T. J.; Yang, L.; Cho, K.; Ryu, C. Y.; Bao, Z. Effect of Mesoscale Crystalline Structure on the Field‐Effect Mobility of Regioregular Poly(3‐Hexyl Thiophene) in Thin‐Film Transistors. Adv. Funct. Mater. 2005, 15, 671–676. DOI:10.1002/adfm.200400297.
  • Wang, C.; Rivnay, J.; Himmelberger, S.; Vakhshouri, K.; Toney, M. F.; Gomez, E. D.; Salleo, A. Ultrathin Body Poly(3-Hexylthiophene) Transistors with Improved Short-Channel Performance. ACS Appl. Mater. Interfaces 2013, 5, 2342–2346. DOI:10.1021/am3027103.
  • Park, Y. D.; Lee, H. S.; Choi, Y. J.; Kwak, D.; Cho, J. H.; Lee, S.; Cho, K. Solubility‐Induced Ordered Polythiophene Precursors for High‐Performance Organic Thin‐Film Transistors. Adv. Funct. Mater. 2009, 19, 1200–1206. DOI:10.1002/adfm.200801763.
  • Zhang, Z.; Chen, G.; Wang, H.; Zhai, W. Enhanced Thermoelectric Property by the Construction of a Nanocomposite 3D Interconnected Architecture Consisting of Graphene Nanolayers Sandwiched by Polypyrrole Nanowires. J. Mater. Chem. C 2015, 3, 1649–1654. DOI:10.1039/C4TC02471K.
  • Jo, S. B.; Lee, W. H.; Qiu, L.; Cho, K. Polymer Blends with Semiconducting Nanowires for Organic Electronics. J. Mater. Chem 2012, 22, 4244–4260. DOI:10.1039/C2JM16059E.
  • Kim, B. G.; Kim, M. S.; Kim, J. Ultrasonic-Assisted Nanodimensional Self-Assembly of Poly-3-Hexylthiophene for Organic Photovoltaic Cells. ACS Nano 2010, 4, 2160–2166. DOI:10.1021/nn901568w.
  • Yu, Z.; Fang, J.; Yan, H.; Zhang, Y.; Lu, K.; Wei, Z. Self-Assembly of Well-Defined Poly(3-Hexylthiophene) Nanostructures toward the Structure–Property Relationship Determination of Polymer Solar Cells. J. Phys. Chem. C. 2012, 116, 23858–23863. DOI:10.1021/jp304273y.
  • Yan, J.; Zhou, F. TiO2 Nanotubes: Structure Optimization for Solar Cells. J. Mater. Chem. 2011, 21, 9406–9418. DOI:10.1039/c1jm10274e.
  • Dillon, A. C. Carbon Nanotubes for Photoconversion and Electrical Energy Storage. Chem. Rev. 2010, 110, 6856–6872. DOI:10.1021/cr9003314.
  • Zang, L. Interfacial Donor–Acceptor Engineering of Nanofiber Materials to Achieve Photoconductivity and Applications. Acc. Chem. Res 2015, 48, 2705–2714. DOI:10.1021/acs.accounts.5b00176.
  • Acevedo-Cartagena, D. E.; Zhu, J.; Trabanino, E.; Pentzer, E.; Emrick, T.; Nonnenmann, S. S.; Briseno, A. L.; Hayward, R. C. Selective Nucleation of Poly(3-Hexyl Thiophene) Nanofibers on Multilayer Graphene Substrates. ACS Macro Lett. 2015, 4, 483–487. DOI:10.1021/acsmacrolett.5b00038.
  • Bedford, N. M.; Dickerson, M. B.; Drummy, L. F.; Koerner, H.; Singh, K. M.; Vasudev, M. C.; Durstock, M. F.; Naik, R. R.; Steckl, A. J. Nanofiber‐Based Bulk‐Heterojunction Organic Solar Cells Using Coaxial Electrospinning. Adv. Energy Mater. 2012, 2, 1136–1144. DOI:10.1002/aenm.201100674.
  • Dillard, C.; Singhal, R.; Kalra, V. Hierarchical Self‐Assembly in Monoaxially Electrospun P3HT/PCBM Nanofibers. Macromol. Mater. Eng. 2015, 300, 320–327. DOI:10.1002/mame.201400214.
  • Li, L.; Jacobs, D. L.; Che, Y.; Huang, H.; Bunes, B. R.; Yang, X.; Zang, L. Poly(3-Hexylthiophene) Nanofiber Networks for Enhancing the Morphology Stability of Polymer Solar Cells. Org. Electron 2013, 14, 1383–1390. DOI:10.1016/j.orgel.2013.02.032.
  • Chang, M.; Lee, J.; Chu, P. H.; Choi, D.; Park, B.; Reichmanis, E. Anisotropic Assembly of Conjugated Polymer Nanocrystallites for Enhanced Charge Transport. ACS Appl. Mater. Interfaces 2014, 6, 21541–21549. DOI:10.1021/am506546k.
  • Li, F.; Yager, K. G.; Dawson, N. M.; Jiang, Y. B.; Malloy, K. J.; Qin, Y. Stable and Controllable Polymer/Fullerene Composite Nanofibers through Cooperative Noncovalent Interactions for Organic Photovoltaics. Chem. Mater. 2014, 26, 3747–3756. DOI:10.1021/cm501251n.
  • Oh, J. Y.; Shin, M.; Lee, H. W.; Lee, Y. J.; Baik, H. K.; Jeong, U. Enhanced Air Stability of Polymer Solar Cells with a Nanofibril-Based Photoactive Layer. ACS Appl. Mater. Interfaces 2014, 6, 7759–7765. DOI:10.1021/am501034g.
  • Roy, P.; Jha, A.; Dasgupta, J. Photoinduced Charge Generation Rates in Soluble P3HT:PCBM Nano-Aggregates Predict the Solvent-Dependent Film Morphology. Nanoscale 2016, 8, 2768–2777. DOI:10.1039/C5NR06445G.
  • Agbolaghi, S.; Zenoozi, S.; Abbasi, F. Conductive Poly(3-Hexylthiophene) Nanofibers and Single Crystals Covered by Coily Dielectric Oligomers and Distinctions between Their Structures Developed by Self-Seeding and Isothermal Approaches. J. Iran. Chem. Soc. 2018, 15, 381–398. DOI:10.1007/s13738-017-1239-1.
  • Zenoozi, S.; Agbolaghi, S.; Gheybi, H.; Abbasi, F. High‐Quality Nano/Micro Hairy Single Crystals Developed from Poly(3‐Hexylthiophene)‐Based Conductive–Dielectric Block Copolymers Having Flat‐on and Edge‐on Orientations. Macromol. Chem. Phys. 2017, 218, 1700067. DOI:10.1002/macp.201700067.
  • Abbaspoor, S.; Agbolaghi, S.; Mahmoudi, M.; Massoumi, B.; Sarvari, R.; Beygi-Khosrowshahi, Y.; Sattari, S. Supramolecular Donor-Acceptor Structures via Orienting Predeveloped Fibrillar Poly(3-Hexylthiophene) Crystals on Bared/Functionalized/Grafted Reduced Graphene Oxide with Novel Thiophenic Constituents. Org. Electron 2018, 52, 243–256. DOI:10.1016/j.orgel.2017.10.035.
  • Agbolaghi, S.; Zenoozi, S.; Hosseini, Z.; Abbasi, F. Scrolled/Flat Crystalline Structures of Poly(3-Hexylthiophene) and Poly(Ethylene Glycol) Block Copolymers Subsuming Unseeded Half-Ring-like and Seeded Cubic, Epitaxial, and Fibrillar Crystals. Macromolecules 2016, 49, 9531–9541. DOI:10.1021/acs.macromol.6b02295.
  • Zenoozi, S.; Agbolaghi, S.; Poormahdi, E.; Hashemzadeh-Gargari, M.; Mahmoudi, M. Verification of Scherrer Formula for Well-Shaped Poly(3-Hexylthiophene)-Based Conductive Single Crystals and Nanofibers and Fabrication of Photovoltaic Devices from Thin Film Coating. Macromol. Res. 2017, 25, 826–840. DOI:10.1007/s13233-017-5082-0.
  • Kim, T.; Im, J. H.; Choi, H. S.; Yang, S. J.; Kim, S. W.; Park, C. R. Preparation and Photoluminescence (PL) Performance of a Nanoweb of P3HT Nanofibers with Diameters below 100 nm. J. Mater. Chem. 2011, 21, 14231–14239. DOI:10.1039/c1jm10396b.
  • Qian, J.; Li, X.; Lunn, D. J.; Gwyther, J.; Hudson, Z. M.; Kynaston, E.; Rupar, P. A.; Winnik, M. A.; Manners, I. Uniform, High Aspect Ratio Fiber-Like Micelles and Block Co-Micelles with a Crystalline π-Conjugated Polythiophene Core by Self-Seeding. J. Am. Chem. Soc. 2014, 136, 4121–4124. DOI:10.1021/ja500661k.
  • Sundarrajan, S.; Murugan, R.; Nair, A. S.; Ramakrishna, S. Fabrication of P3HT/PCBM Solar Cloth by Electrospinning Technique. Mater. Lett 2010, 64, 2369–2372. DOI:10.1016/j.matlet.2010.07.054.
  • Agbolaghi, S. Core–Shell Super-Structures via Smart Deposition of Naphthothiadiazole and Benzodithiophene-Possessing Polymer Backbones onto Carbon Nanotubes and Photovoltaic Applications Thereof. J. Mater. Sci: Mater. Electron. 2019, 30, 832–841. DOI:10.1007/s10854-018-0353-x.
  • Reinspach, J. A.; Diao, Y.; Giri, G.; Sachse, T.; England, K.; Zhou, Y.; Tassone, C.; Worfolk, B. J.; Presselt, M.; Toney, M. F.; et al. Tuning the Morphology of Solution-Sheared P3HT:PCBM Films. ACS Appl. Mater. Interfaces 2016, 8, 1742–1751. DOI:10.1021/acsami.5b09349.
  • Rahimi, K.; Botiz, I.; Agumba, J. O.; Motamen, S.; Stingelin, N.; Reiter, G. Light Absorption of Poly(3-Hexylthiophene) Single Crystals. RSC Adv. 2014, 4, 11121–11123. DOI:10.1039/C3RA47064D.
  • Sun, S.; Salim, T.; Wong, L. H.; Foo, Y. L.; Boey, F.; Lam, Y. M. A New Insight into Controlling Poly(3-Hexylthiophene) Nanofiber Growth through a Mixed-Solvent Aapproach for Organic Photovoltaics Applications. J. Mater. Chem 2011, 21, 377–386. DOI:10.1039/C0JM02109A.
  • Bounioux, C.; Avrahami, R.; Vasilyev, G.; Patil, N.; Zussman, E.; Yerushalmi–Rozen, R. Single-Step Electrospinning of Multi Walled Carbon Nanotubes–Poly(3-Octylthiophene) Hybrid Nano-Fibers. Polymer 2016, 86, 15–21. DOI:10.1016/j.polymer.2016.01.034.
  • Sun, Z.; Xiao, K.; Keum, J. K.; Yu, X.; Hong, K.; Browning, J.; Ivanov, I. N.; Chen, J.; Alonzo, J.; Li, D.; et al. PS‐b‐P3HT Copolymers as P3HT/PCBM Interfacial Compatibilizers for High Efficiency Photovoltaics. Adv. Mater. 2011, 23, 5529–5535. DOI:10.1002/adma.201103361.
  • Treat, N. D.; Brady, M. A.; Smith, G.; Toney, M. F.; Kramer, E. J.; Hawker, C. J.; Chabinyc, M. L. Interdiffusion of PCBM and P3HT Reveals Miscibility in a Photovoltaically Active Blend. Adv. Energy Mater. 2011, 1, 82–89. DOI:10.1002/aenm.201000023.
  • Shimomura, T.; Takahashi, T.; Ichimura, Y.; Nakagawa, S.; Noguchi, K.; Heike, S.; Hashizume, T. Relationship between Structural Coherence and Intrinsic Carrier Transport in an Isolated Poly(3-Hexylthiophene) Nanofiber. Phys. Rev. B. 2011, 83, 115314. DOI:10.1103/PhysRevB.83.115314.
  • Roehling, J. D.; Arslan, I.; Moulé, A. J. Controlling Microstructure in Poly(3-Hexylthiophene) Nanofibers. J. Mater. Chem. 2012, 22, 2498–2506. DOI:10.1039/C2JM13633C.
  • Snyder, C. R.; Nieuwendaal, R. C.; DeLongchamp, D. M.; Luscombe, C. K.; Sista, P.; Boyd, S. D. Quantifying Crystallinity in High Molar Mass Poly(3-Hexylthiophene). Macromolecules 2014, 47, 3942–3950. DOI:10.1021/ma500136d.
  • Alizadehaghdam, M.; Heck, B.; Siegenführ, S.; Abbasi, F.; Reiter, G. Thermodynamic Features of Perfectly Crystalline Poly (3-Hexylthiophene) Revealed through Studies of Imperfect Crystals. Macromolecules 2019, 52, 2487–2494. DOI:10.1021/acs.macromol.8b02350.
  • Malik, S.; Nandi, A. K. Crystallization Mechanism of Regioregular Poly(3‐Alkyl Thiophene)s. J. Polym. Sci. B Polym. Phys. 2002, 40, 2073–2085. DOI:10.1002/polb.10272.
  • Chan, K. H. K.; Yamao, T.; Kotaki, M.; Hotta, S. Unique Structural Features and Electrical Properties of Electrospun Conjugated Polymer Poly(3-Hexylthiophene) (P3HT) Fibers. Synth. Met. 2010, 160, 2587–2595. DOI:10.1016/j.synthmet.2010.10.009.
  • Chou, C. C.; Wu, H. C.; Lin, C. J.; Ghelichkhani, E.; Chen, W. C. Morphology and Field‐Effect Transistor Characteristics of Electrospun Nanofibers Prepared from Crystalline Poly (3‐Hexylthiophene) and Polyacrylate Blends. Macromol. Chem. Phys. 2013, 214, 751–760. DOI:10.1002/macp.201200580.
  • Deribew, D.; Pavlopoulou, E.; Fleury, G.; Nicolet, C.; Renaud, C.; Mougnier, S. J.; Vignau, L.; Cloutet, E.; Brochon, C.; Cousin, F.; et al. Crystallization-Driven Enhancement in Photovoltaic Performance through Block Copolymer Incorporation into P3HT:PCBM Blends. Macromolecules 2013, 46, 3015–3024. DOI:10.1021/ma302128h.
  • Zenoozi, S.; Agbolaghi, S.; Nazari, M.; Abbasi, F. Thermal and Optical Properties of Nano/Micro Single Crystals and Nanofibers Obtained from Semiconductive-Dielectric Poly(3-Hexylthiophene) Block Copolymers. Mater. Sci. Semicond. Process 2017, 64, 85–94. DOI:10.1016/j.mssp.2017.03.015.
  • Liu, J.; Zou, J.; Zhai, L. Bottom‐up Assembly of Poly(3‐Hexylthiophene) on Carbon Nanotubes: 2D Building Blocks for Nanoscale Circuits. Macromol. Rapid Commun. 2009, 30, 1387–1391. DOI:10.1002/marc.200900225.
  • Liu, J.; Moo-Young, J.; McInnis, M.; Pasquinelli, M. A.; Zhai, L. Conjugated Polymer Assemblies on Carbon Nanotubes. Macromolecules 2014, 47, 705–712. DOI:10.1021/ma401609q.
  • Misra, R. D. K.; Depan, D.; Challa, V. S. A.; Shah, J. S. Supramolecular Structures Fabricated through the Epitaxial Growth of Semiconducting Poly(3-Hexylthiophene) on Carbon Nanotubes as Building Blocks of Nanoscale Electronics. Phys. Chem. Chem. Phys. 2014, 16, 19122–19129. DOI:10.1039/C4CP02089H.
  • Dias, Y.; Yerushalmi-Rozen, R. Entropic Effects in Carbon Nanotubes-Templated Crystallization of Poly(3-Alkyl Thiophenes, P3HT, P3OT). Polymer 2013, 54, 6399–6405. DOI:10.1016/j.polymer.2013.09.057.
  • Boon, F.; Desbief, S.; Cutaia, L.; Douhéret, O.; Minoia, A.; Ruelle, B.; Clément, S.; Coulembier, O.; Cornil, J.; Dubois, P.; Lazzaroni, R.; et al. Synthesis and Characterization of Nanocomposites Based on Functional Regioregular Poly (3‐Hexylthiophene) and Multiwall Carbon Nanotubes. Macromol. Rapid Commun. 2010, 31, 1427–1434. DOI:10.1002/marc.201000183.
  • Challa, V. S. A.; Nune, K. C.; Misra, R. D. K. The Impact of Molecular Weight on Nanoscale Supramolecular Structure of Semiconducting Poly(3-Hexylthiophene) on Carbon Nanotubes and Photophysical Properties. Mater. Technol. 2016, 31, 477–481. DOI:10.1080/10667857.2015.1105581.
  • Depan, D.; Khattab, A.; Simoneaux, A.; Chirdon, W. Crystallization Kinetics of High‐Density and Low‐Density Polyethylene on Ccarbon Nanotubes. Polym. Cryst. 2019, e10062. DOI:10.1002/pcr2.10062.
  • Chunder, A.; Liu, J.; Zhai, L. Reduced Graphene Oxide/Poly (3‐Hexylthiophene) Supramolecular Composites. Macromol. Rapid Commun. 2010, 31, 380–384. DOI:10.1002/marc.200900626.
  • Shrotriya, G.; Li, V.; Huang, J.; Yao, Y.; Moriarty, T.; Emery, K.; Yang, Y. High-Efficiency Solution Processable Polymer Photovoltaic Cells by Self-Organization of Polymer Blends. Nature Mater. 2005, 4, 864–868. DOI:10.1038/nmat1500.
  • Yang, Z.; Lu, H. Nonisothermal Crystallization Behaviors of Poly(3‐Hexylthiophene)/Reduced Graphene Oxide Nanocomposites. J. Appl. Polym. Sci. 2013, 128, 802–810. DOI:10.1002/app.38265.
  • Skrypnychuk, V.; Boulanger, N.; Yu, V.; Hilke, M.; Mannsfeld, S. C.; Toney, M. F.; Barbero, D. R. Enhanced Vertical Charge Transport in a Semiconducting P3HT Thin Film on Single Layer Graphene. Adv. Funct. Mater. 2015, 25, 664–670. DOI:10.1002/adfm.201403418.
  • Kim, D. H.; Lee, H. S.; Shin, H. J.; Bae, Y. S.; Lee, K. H.; Kim, S. W.; Choi, D.; Choi, J. Y. Graphene Surface Induced Specific Self-Assembly of Poly(3-Hexylthiophene) for Nanohybrid Optoelectronics: From First-Principles Calculation to Experimental Characterizations. Soft Matter 2013, 9, 5355–5360. DOI:10.1039/c3sm27767d.
  • Zhou, X.; Chen, Z.; Qu, Y.; Su, Q.; Yang, X. Fabricating Graphene Oxide/Poly(3-Butylthiophene) Hybrid Materials with Different Morphologies and Crystal Structures. RSC Adv. 2013, 3, 4254–4260. DOI:10.1039/c3ra00032j.
  • Zhou, X.; Yang, X. Improved Dispersibility of Graphene Oxide in o-Dichlorobenzene by Adding a Poly(3-Alkylthiophene). Carbon 2012, 50, 4566–4572. DOI:10.1016/j.carbon.2012.05.041.
  • Lohwasser, R. H.; Thelakkat, M. Toward Perfect Control of End Groups and Polydispersity in Poly(3-Hexylthiophene) via Catalyst Transfer Polymerization. Macromolecules 2011, 44, 3388–3397. DOI:10.1021/ma200119s.
  • Petit, C.; Seredych, M.; Bandosz, T. J. Revisiting the Chemistry of Graphite Oxides and Its Effect on Ammonia Adsorption. J. Mater. Chem. 2009, 19, 9176–9185. DOI:10.1039/b916672f.
  • Liu, J.; McCullough, R. D. End Group Modification of Regioregular Polythiophene through Postpolymerization Functionalization. Macromolecules 2002, 35, 9882–9889. DOI:10.1021/ma021362p.
  • Agostinelli, T.; Lilliu, S.; Labram, J. G.; Campoy-Quiles, M.; Hampton, M.; Pires, E.; Rawle, J.; Bikondoa, O.; Bradley, D. D. C.; Anthopoulos, T. D.; et al. Real‐Time Investigation of Crystallization and Phase‐Segregation Dynamics in P3HT: PCBM Solar Cells during Thermal Annealing. Adv. Funct. Mater. 2011, 21, 1701–1708. DOI:10.1002/adfm.201002076.
  • Bodor, G. Structural Investigation of Polymers; Ellis Horwood: Chichester, UK, 1991.
  • Kim, J. Y.; Frisbie, C. D. Correlation of Phase Behavior and Charge Transport in Conjugated Polymer/Fullerene Blends. J. Phys. Chem. C. 2008, 112, 17726–17736. DOI:10.1021/jp8061493.
  • Wu, Z.; Petzold, A.; Henze, T.; Thurn-Albrecht, T.; Lohwasser, R. H.; Sommer, M.; Thelakkat, M. Temperature and Molecular Weight Dependent Hierarchical Equilibrium Structures in Semiconducting Poly(3-Hexylthiophene). Macromolecules 2010, 43, 4646–4653. DOI:10.1021/ma902566h.
  • Pascui, O. F.; Lohwasser, R.; Sommer, M.; Thelakkat, M.; Thurn-Albrecht, T.; SaalwäChter, K. High Crystallinity and Nature of Crystal − Crystal Phase Transformations in Regioregular Poly(3-Hexylthiophene). Macromolecules 2010, 43, 9401–9410. DOI:10.1021/ma102205t.
  • Lee, C. S.; Dadmun, M. D. Important Thermodynamic Characteristics of Poly(3-Hexyl Thiophene). Polymer 2014, 55, 4–7. DOI:10.1016/j.polymer.2013.11.033.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.