254
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Density functional theory study of fullerenes adsorption on nitrogenated holey graphene sheet

&
Pages 601-606 | Received 07 Jan 2019, Accepted 17 May 2019, Published online: 29 May 2019

References

  • Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306, 666–669. DOI:10.1126/science.1102896.
  • Novoselov, K.; Geim, A. K.; Morozov, S.; Jiang, D.; Katsnelson, M.; Grigorieva, I.; Dubonos, S.; Firsov, A. Two-Dimensional Gas of Massless Dirac Fermions in Graphene. Nature 2005, 438, 197–200. DOI:10.1038/nature04233.
  • Castro Neto, A. H.; Guinea, F.; Peres, N. M. R.; Novoselov, K. S.; Geim, A. K. The Electronic Properties of Graphene. Rev. Mod. Phys. 2009, 81, 109. DOI:10.1103/RevModPhys.81.109.
  • Gunlycke, D.; Lawler, H. M.; White, C. T. Room-Temperature Ballistic Transport in Narrow Graphene Strips. Phys. Rev. B. 2017, 75, 85418. DOI:10.1103/PhysRevB.75.085418.
  • Zhang, Y. B.; Tan, Y. W.; Stormer, H. L.; Kim, P. Experimental Observation of the Quantum Hall Effect and Berry's Phase in Graphene. Nature 2005, 438, 201–204. DOI:10.1038/nature04235.
  • Du, X.; Skachko, I.; Barker, A.; Andrei, E. Y. Approaching Ballistic Transport in Suspended Graphene. Nature Nanotech. 2008, 3, 491–495. DOI:10.1038/nnano.2008.199.
  • Stander, N.; Huard, B.; Goldhaber-Gordon, D. Evidence for Klein Tunneling in Graphene p − n Junctions. Phys. Rev. Lett. 2009, 102, 026807. DOI:10.1103/PhysRevLett.102.026807.
  • Wang, X.; Li, X.; Zhang, L.; Yoon, Y.; Weber, P. K.; Wang, H.; Guo, J.; Dai, H. N-Doping of Graphene through Electrothermal Reactions with Ammonia. Science 2009, 329, 1467. DOI:10.1126/science.1170335.
  • Xue, Y.; Liu, J.; Chen, H.; Wang, R.; Li, D.; Qu, J.; Dai, L. Nitrogen-Doped Graphene Foams as Metal-Free Counter Electrodes in High-Performance Dye-Sensitized Solar Cells. Angew. Chem. Int. Ed. 2012, 51, 12124–12127. DOI:10.1002/anie.201207277.
  • Osella, S.; Narita, A.; Schwab, M. G.; Hernandez, Y.; Feng, X.; Müllen, K.; Beljonne, D. Graphene Nanoribbons as Low Band Gap Donor Materials for Organic Photovoltaics: Quantum Chemical Aided Design. ACS Nano 2012, 6, 5539–5548. DOI:10.1021/nn301478c.
  • Majidi, R. Band Gap Modulation of Graphyne: A Density Functional Theory Study. J. Math. Nanoscience 2015, 4, 11–22. DOI:10.22061/JMNS.2015.486.[CrossRef]
  • McCann, E.; Abergel, D. S. L.; Fal’ko, V. I. Electrons in Bilayer Graphene. Solid State Commun 2007, 143, 110–115. DOI:10.1016/j.ssc.2007.03.054.
  • Elias, D. C.; Nair, R. R.; Mohiuddin, T. M.; Morozov, S. V.; Blake, P.; Halsall, M. P.; Ferrari, A. C.; Boukhvalov, D. W.; Katsnelson, M. I.; Geim, A. K.; Novoselov, K. S. Control of Graphene's Properties by Reversible Hydrogenation: Evidence for Graphane. Science 2009, 323, 610–613. DOI:10.1126/science.1167130.
  • Shayeganfar, F. Energy Gap Tuning of Graphene Layers with Single Molecular F2 Adsorption. J. Phys. Chem. C 2015, 119, 12681–12689. DOI:10.1021/acs.jpcc.5b01560.
  • Sahu, S.; Rout, G. C. Band Gap Opening in Graphene: A Short Theoretical Study. Int. Nano Lett. 2017, 7, 81–89. DOI:10.1007/s40089-017-0203-5.
  • Majidi, R.; Ghafoori Tabrizi, K. Electronic Properties of Defect-Free and Defective Bilayer Graphene in an Electric Field. Fuller. Nanotube Car. N 2011, 19, 532–539. DOI:10.1080/1536383X.2010.494780.
  • Majidi, R.; Karami, A. R. Electronic Properties of BN-Doped Bilayer Graphene and Graphyne in the Presence of Electric Field. Mol. Phys 2013, 111, 3194–3199. DOI:10.1080/00268976.2013.775514.
  • Majidi, R.; Karami, A. R. Electronic Properties of Bilayer and Trilayer Graphyne in the Presence of Electric Field. Struct. Chem. 2014, 25, 853–858. DOI:10.1007/s11224-013-0350-x.
  • Majidi, R. Effect of Doping on the Electronic Properties of Graphene. Nano. 2013, 8, 1350060. DOI:10.1142/S1793292013500604.
  • Sofo, J. O.; Chaudhari, A. S.; Barber, G. D. Graphane: A Two-Dimensional Hydrocarbon. Phys. Rev. B 2007, 75, 153401. [Database] DOI:10.1103/PhysRevB.75.153401.
  • Majidi, R. Electronic Properties of Porous Graphene, α-Graphyne, Graphene-like, and Graphyne-like BN Sheets. Can. J. Phys. 2016, 94, 305–309. DOI:10.1139/cjp-2015-0445.
  • Robinson, J. T.; Burgess, J. S.; Junkermeier, C. E.; Badescu, S. C.; Reinecke, T. L.; Perkins, F. K.; Zalalutdniov, M. K.; Baldwin, J. W.; Culbertson, J. C.; Sheehan, P. E.; Snow, E. S. Properties of Fluorinated Graphene Films. Nano Lett. 2010, 10, 3001–3005. DOI:10.1021/nl101437p.
  • Solenov, D.; Junkermeier, C.; Reinecke, T. L.; Velizhanin, K. A. Tunable Adsorbate-Adsorbate Interactions on Graphene. Phys. Rev. Lett. 2013, 111, 115502.DOI:10.1103/PhysRevLett.111.115502.
  • Jiang, D. E.; Cooper, V. R.; Dai, S. Porous Graphene as the Ultimate Membrane for Gas Separation. Nano Lett. 2009, 9, 4019–4024. DOI:10.1021/nl9021946.
  • Mahmood, J.; Lee, E. K.; Jung, M.; Shin, D.; Jeon, I.-Y.; Jung, S.-M.; Choi, H.-J.; Seo, J.-M.; Bae, S.-Y.; Sohn, S.-D.; et al. Nitrogenated Holey Two-Dimensional Structures. Nat. Commun. 2015, 6, 6486.DOI:10.1038/ncomms7486.
  • Tromer, R. M.; da Luz, M. G. E.; Ferreira, M. S.; Pereira, L. F. C. Atomic Adsorption on Nitrogenated Holey Graphene. J. Phys. Chem. C. 2017, 121, 3055–3061. DOI:10.1021/acs.jpcc.6b10058.
  • Yagmurcukardes, M.; Horzum, S.; Torun, E.; Peeters, F. M.; Senger, R. T. Nitrogenated, Phosphorated and Arsenicated Monolayer Holey Graphenes. Phys. Chem. Chem. Phys. 2016, 18, 3144. DOI:10.1039/C5CP05538E.
  • Majidi, R.; Odelius, M.; AlTaha, S. Structural and Electronic Properties of Nitrogenated Holey Nanotubes: A Density Functional Theory Study. Diam. Relat. Mat. 2018, 82, 96–101. DOI:10.1016/j.diamond.2018.01.006.
  • Mortazavi, B.; Rahaman, O.; Rabczuk, T.; Felipe, L.; Pereira, C. Thermal Conductivity and Mechanical Properties of Nitrogenated Holey Graphene. Carbon 2016, 106, 1–8. DOI:10.1016/j.carbon.2016.05.009.
  • Yang, Y.; Li, W.; Zhou, H.; Zhang, X.; Zhao, M. Tunable C2N Membrane for High Efficient Water Desalination. Sci. Rep. 2016, 6, 29218.DOI:10.1038/srep29218.
  • Zhang, T.; Zhu, L. Giant Reduction of Thermal Conductivity in a Two-Dimensional Nitrogenated Holey C2N Nanosheet. Phys. Chem. Chem. Phys. 2017, 19, 1757–1761. DOI:10.1039/C6CP05637G.
  • Rahaman, O.; Mortazavi, B.; Dianat, A.; Cuniberti, G.; Rabczuk, T. A Structural Insight into Mechanical Strength of Graphene-like Carbon and Carbon Nitride Networks. Nanotechnology 2017, 28, 055707. DOI:10.1088/1361-6528/28/5/055707.
  • Pickard, C. J.; Salamat, A.; Bojdys, M. J.; Needs, R. J.; McMillan, P. F. Carbon Nitride Frameworks and Dense Crystalline Polymorphs. Phys. Rev. B 2016, 94, 094104. DOI:10.1103/PhysRevB.94.094104.
  • Zheng, Y.; Li, H.; Yuan, H.; Fan, H.; Li, W.; Zhang, J. Understanding the Anchoring Effect of Graphene, BN, C2N and C3N4 Monolayers for Lithium − Polysulfides in Li − S Batteries. Appl. Surf. Sci 2018, 434, 596–603. DOI:10.1016/j.apsusc.2017.10.230.
  • Shi, L.-B.; Zhang, Y.-Y.; Xiu, X.-M.; Dong, H.-K. Structural Characteristics and Strain Behavior of Two-Dimensional C3N: First Principles Calculations. Carbon 2018, 134, 103–111. DOI:10.1016/j.carbon.2018.03.076.
  • Shi, L.-B.; Cao, S.; Zhang, J.; Xiu, X.-M.; Dong, H.-K. Mechanical Behaviors and Electronic Characteristics on Two-Dimensional C2N3 and C2N3H: First Principles Calculations. Physica E 2018, 103, 252–263. DOI:10.1016/j.physe.2018.06.014.
  • Yu, H. L.; Jiang, X. F.; Cai, M. Q.; Feng, J. F.; Chen, X. S.; Yang, X. F.; Liu, Y. S. Electronic and Magnetic Properties of Zigzag C2N-h2D Nanoribbons: Edge and Width Effects. Chem. Phys. Lett 2017, 685, 363–370. DOI:10.1016/j.cplett.2017.07.071.
  • Xu, C. Y.; Dong, H. K.; Shi, L. B. First Principles Investigation of Nitrogenated Holey Graphene. Physica E 2018, 98, 135–139. DOI:10.1016/j.physe.2017.12.032.
  • Yang, Y.; Guo, M.; Zhang, G.; Li, W. Tuning the Electronic and Magnetic Properties of Porous Graphene-like Carbon Nitride through 3d Transition-Metal Doping. Carbon 2017, 117, 120–125. DOI:10.1016/j.carbon.2017.02.069.
  • Koh, W.; Lee, J. H.; Lee, S. G.; Choi, J.; Jang, S. S. Li Adsorption on a Graphene–Fullerene Nanobud System: Density Functional Theory Approach. RSC Adv. 2015, 5, 32819. DOI:10.1039/C4RA15619F.
  • Liu, X.; Wen, Y.; Chen, Z.; Lin, H.; Chen, R.; Cho, K.; Shan, B. Modulation of Dirac Points and Band-Gaps in Graphene via Periodic Fullerene Adsorption. AIP Advances 2013, 3, 052126. DOI:10.1063/1.4807738.
  • Troche, K. S.; Coluci, V. R.; Rurali, R.; Galvao, S. Structural and Electronic Properties of Zigzag Carbon Nanotubes Filled with Small Fullerenes. J. Phys: Condens. Matter 2007, 19, 236222. DOI:10.1088/0953-8984/19/23/236222/meta.
  • Majidi, R. Electronic Properties of Graphyne Nanotubes Filled with Small Fullerenes: A Density Functional Theory Study. J. Comput. Electron. 2016, 15, 1263–1268. DOI:10.1007/s10825-016-0925-z.
  • Majidi, R.; Odelius, M.; Babaee, S. Encapsulation of Small Fullerenes into Nitrogenated Holey Nanotubes: A Density Functional Theory Study. Mol. Phys. 2019, 117, 776–783. DOI:10.1080/00268976.2018.1542163.
  • Ozaki, T.; Kino, H.; Yu, J.; Han, M. J.; Kobayashi, N.; Ohfuti, M.; Ishii, F. User’s manual of OpenMX version 3.8. http://www.openmx-square.org.
  • Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865. DOI:10.1103/PhysRevLett.77.3865.
  • Perdew, J. P.; Burke, K.; Wang, Y. Generalized Gradient Approximation for the Exchange-Correlation Hole of a Many-Electron System. Phys. Rev. B 1996, 54, 16533. DOI:10.1103/PhysRevB.54.16533.
  • Grimme, S. J. Semiempirical GGA-Type Density Functional Constructed with a Long-Range Dispersion Correction. J. Comput. Chem. 2006, 27, 1787–1799. DOI:10.1002/jcc.20495.
  • Akilan, R.; Mlarkodi, M.; Vijayakumar, S.; Gopalakrishnan, S.; Shankar, R. Modeling of 2-D Hydrogen-Edge Capped Defected & Boron-Doped Defected Graphene Sheets for the Adsorption of CO2, SO2 towards Energy Harvesting Applications. Appl. Surf. Sci 2019, 434, 596–609. DOI:10.1016/j.apsusc.2018.08.179.
  • Li, H.; Tee, B. C. K.; Cha, J. J.; Cui, Y.; Chung, J. W.; Lee, S. Y.; Bao, Z. High-Mobility Field-Effect Transistors from Large-Area Solution-Grown Aligned C60 Single Crystals. J. Am. Chem. Soc. 2012, 134, 2760–2765. DOI:10.1021/ja210430b.
  • Kim, K.; Lee, T. H.; Santos, E. J. G.; Jo, P. S.; Salleo, A.; Nishi, Y.; Bao, Z. Structural and Electrical Investigation of C60–Graphene Vertical Heterostructures. ACS Nano 2015, 9, 5922–5928. DOI:10.1021/acsnano.5b00581.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.