301
Views
15
CrossRef citations to date
0
Altmetric
Original Articles

Al2O3/MnO2/CNTs nanocomposite: Synthesis, characterization and phenol adsorption

, , , , &
Pages 591-600 | Received 26 Apr 2019, Accepted 20 May 2019, Published online: 04 Jun 2019

References

  • Clavé, G.; Delport, G.; Roquelet, C.; Lauret, J. S.; Deleporte, E.; Vialla, F.; Langlois, B.; Parret, R.; Voisin, C.; Roussignol, P.; et al. Functionalization of Carbon Nanotubes through Polymerization in Micelles: A Bridge between the Covalent and Noncovalent Methods. Chem. Mater. 2013, 25, 2700–2707. DOI:10.1021/cm401312v.
  • Herrero-Latorre, C.; Álvarez-Méndez, J.; Barciela-García, J.; García-Martín, S.; Peña-Crecente, R. M. Characterization of Carbon Nanotubes and Analytical Methods for Their Determination in Environmental and Biological Samples : A Review. Anal. Chim. Acta. 2015, 853, 77–94. DOI:10.1016/j.aca.2014.10.008.
  • Aqel, A.; El-Nour, K. M. M. A.; Ammar, R. A. A.; Al-Warthan, A. Carbon Nanotubes, Science and Technology Part (I) Structure, Synthesis and Characterisation. Arab. J. Chem. 2012, 5, 1–23. DOI:10.1016/j.arabjc.2010.08.022.
  • Wepasnick, K. A.; Smith, B. A.; Bitter, J. L.; Fairbrother, D. H. Chemical and Structural Characterization of Carbon Nanotube Surfaces. Anal. Bioanal. Chem. 2010, 396, 1003–1014. DOI:10.1007/s00216-009-3332-5.
  • Meng, L.; Fu, C.; Lu, Q. Advanced Technology for Functionalization of Carbon Nanotubes. Prog. Nat. Sci. 2009, 19, 801–810. DOI:10.1016/j.pnsc.2008.08.011.
  • Tasis, D.; Tagmatarchis, N.; Bianco, A.; Prato, M. Chemistry of Carbon Nanotubes. Chem. Rev. 2006, 106, 1105–1136. DOI:10.1021/cr050569o.
  • Saifuddin, N.; Raziah, A. Z.; Junizah, A. R.; Carbon Nanotubes, : A. Review on Structure and Their Interaction with Proteins. J. Chem. 2013, 2013, 1. DOI:10.1155/2013/676815.
  • Ihsanullah, M.; Al Amer, A.; Laoui, T.; Abbas, A.; Al-Aqeeli, N.; Patel, F.; Khraisheh, M.; Atieh, M. A.; Hilal, N. Fabrication and Antifouling Behaviour of a Carbon Nanotube Membrane. Mater. Des. 2015, 89, 549–558.
  • Abbas, A.; Abussaud, B. A.; Ihsanullah, Al-Baghli, N. A. H.; Redhwi, H. H. Adsorption of Toluene and Paraxylene from Aqueous Solution Using Pure and Iron Oxide Impregnated Carbon Nanotubes: Kinetics and Isotherms Study. Bioinorg. Chem. Appl. 2017, 2017, 1–11.
  • Ihsanullah, Abbas, A.; Al-Amer, A. M.; Laoui, T.; Al-Marri, M. J.; Nasser, M. S.; Khraisheh, M.; Atieh, M. A. Heavy Metal Removal from Aqueous Solution by Advanced Carbon Nanotubes: Critical Review of Adsorption Applications. Sep. Purif. Technol. 2016, 157, 141–161.
  • Yu, F.; Wu, Y.; Li, X.; Ma, J. Kinetic and Thermodynamic Studies of Toluene, Ethylbenzene, and m-Xylene Adsorption from Aqueous Solutions onto KOH-Activated Multiwalled Carbon Nanotubes. J. Agric. Food Chem. 2012, 60, 12245–12253. DOI:10.1021/jf304104z.
  • Ding, H.; Li, X.; Wang, J.; Zhang, X.; Chen, C. Adsorption of Chlorophenols from Aqueous Solutions by Pristine and Surface Functionalized Single-Walled Carbon Nanotubes. J. Environ. Sci. 2016, 43, 187–198. DOI:10.1016/j.jes.2015.09.004.
  • Silambarasan, D.; Surya, V. J.; Vasu, V.; Iyakutti, K. Single Walled Carbon Nanotube-Metal Oxide Nanocomposites for Reversible and Reproducible Storage of Hydrogen. ACS Appl. Mater. Interfaces 2013, 5, 11419–11426. DOI:10.1021/am403662t.
  • Mehmood, U.; Hussein, I. A.; Harrabi, K.; Mekki, M. B.; Ahmed, S.; Tabet, N. Hybrid TiO2–Multiwall Carbon Nanotube (MWCNTs) Photoanodes for Efficient Dye Sensitized. Solar Cells (DSSCs). Sol. Energy Mater. Sol. Cells 2015, 140, 174–179. DOI:10.1016/j.solmat.2015.04.004.
  • Andersen, N. I.; Serov, A.; Atanassov, P. Metal Oxides/CNT Nano-Composite Catalysts for Oxygen Reduction/Oxygen Evolution in Alkaline Media. Appl. Catal. B Environ. 2015, 163, 623–627. DOI:10.1016/j.apcatb.2014.08.033.
  • Gupta, V.; Saleh, T. A. Syntheses of Carbon Nanotube-Metal Oxides Composites; Adsorption and Photo-Degradation. In Carbon Nanotubes from Research to Applications; Bianco, S., Ed.; 2011, IntechOpen, London, pp. 295–312. https://www.intechopen.com/books/carbon-nanotubesfrom-research-to-applications/syntheses-of-carbon-nanotube-metaloxides-composites-adsorption-and-photo-degradation
  • Abbas, A., A.; Abussaud, B.; Ihsanullah, A. H.; Al-Baghli, N.; Khraisheh, M.; Ali Atieh, M. Benzene Removal by Iron Oxide Nanoparticles Decorated Carbon Nanotubes. J. Nanomater. 2016, 2016, 1–10.
  • Zeino, A.; Abulkibash, A.; Khaled, M.; Atieh, M. Bromate Removal from Water Using Doped Iron Nanoparticles on Multiwalled Carbon Nanotubes (CNTS). J. Nanomater 2014, 2014, 1–9. DOI:10.1155/2014/561920.
  • Apul, O. G.; Wang, Q.; Shao, T.; Rieck, J. R.; Karanfil, T. Predictive Model Development for Adsorption of Aromatic Contaminants by Multi-Walled Carbon Nanotubes. Environ. Sci. Technol. 2013, 47, 2295–2303. DOI:10.1021/es3001689.
  • Yu, F.; Ma, J.; Wu, Y. Adsorption of Toluene, Ethylbenzene and Xylene Isomers on Multi-Walled Carbon Nanotubes Oxidized by Different Concentration of NaOCl. Front. Environ. Sci. Eng. China 2012, 6, 320–329. DOI:10.1007/s11783-011-0340-4.
  • Ming-Liang, C.; Feng-Jun, Z.; Oh, W. Synthesis, Characterization, and Photocatalytic Analysis of CNT/TiO 2 Composites Derived from MWCNTs and Titanium Sources. New Carbon Mater. 2009, 24, 159–166. DOI:10.1016/S1872-5805(08)60045-1.
  • Wang, J.-W.; Chen, Y.; Chen, B.-Z. A Synthesis Method of MnO2/Activated Carbon Composite for Electrochemical Supercapacitors. J. Electrochem. Soc. 2015, 162, A1654–A1661. DOI:10.1149/2.0031509jes.
  • Buzarovska, A.; Stefov, V.; Najdoski, M.; Bogoeva-Gaceva, G. Thermal Analysis of Multi-Walled Carbon Nanotubes Material Obtained by Catalytic Pyrolysis of Polyethylene. Maced. J. Chem. Chem. Eng. 2015, 34, 373–379. DOI:10.20450/mjcce.2015.620.
  • Da Silva, H. V.; Porto, A. O.; Caliman, C. C.; De Freitas Filho, R. L.; Cotta, A. A. C.; Macedo, W. A. A.; Teixeira, A. P. C. Direct Synthesis of Porous Carbon Materials Prepared from Diethyldithiocarbamate Metal Complexes and Their Electrochemical Behavior. J. Braz. Chem. Soc. 2018, 29, 1904–1916.
  • Corcione, C. E.; Frigione, M. Characterization of Nanocomposites by Thermal Analysis. Materials. 2012, 5, 2960–2980. DOI:10.3390/ma5122960.
  • Kannan, R.; Karunakaran, K.; Vasanthkumar, S. Facile Synthesis and Catalytic Studies of CdS–Manganese Oxide Nanocomposite. Appl. Nanosci. 2011, 1, 197–203. DOI:10.1007/s13204-011-0027-y.
  • Guedes, A.; Valentim, B.; Prieto, A. C.; Sanz, A.; Flores, D.; Noronha, F. Characterization of Fly Ash from a Power Plant and Surroundings by Micro-Raman Spectroscopy. Int. J. Coal Geol. 2008, 73, 359–370. DOI:10.1016/j.coal.2007.09.001.
  • Fayemi, O. E.; Adekunle, A. S.; Ebenso, E. E. Biosensors & Bioelectronics Metal Oxide Nanoparticles/Multi-Walled Carbon Nanotube Nanocomposite Modified Electrode for the Detection of Dopamine : Comparative Electrochemical Study. J. Biosens. Bioelectron 2015, 6, 1–14.
  • Geng, Y.; Fang, D.; Sun, L. Determining Carbon Nanotube Properties from Raman Scattering Measurements http://www.photonics.ethz.ch/fileadmin/user_upload/optics/Courses/NanoOptics/ProjectReports/swntRaman.pdf (accessed Jan 20, 2019).
  • Costa, S.; Borowiak-Palen, E.; Kruszyńska, M.; Bachmatiuk, A.; Kaleńczuk, R. J. Characterization of Carbon Nanotubes by Raman Spectroscopy. Mater. Sci 2008, 26, 434–441.
  • Popov, A.; Kondratieva, E.; Goupil, J. M.; Mariey, L.; Bazin, P.; Gilson, J. P.; Travert, A.; Maugé, F. Bio-Oils Hydrodeoxygenation: Adsorption of Phenolic Molecules on Oxidic Catalyst Supports. J. Phys. Chem. C 2010, 114, 15661–15670. DOI:10.1021/jp101949j.
  • Popov, A.; Kondratieva, E.; Gilson, J. P.; Mariey, L.; Travert, A.; Maugé, F. IR Study of the Interaction of Phenol with Oxides and Sulfided CoMo Catalysts for Bio-Fuel Hydrodeoxygenation. Catal. Today 2011, 172, 132–135. DOI:10.1016/j.cattod.2011.02.010.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.