507
Views
19
CrossRef citations to date
0
Altmetric
Original Articles

Paraffin@graphene/silicon rubber form-stable phase change materials for thermal energy storage

, , , , , , & show all
Pages 626-631 | Received 23 May 2019, Accepted 24 May 2019, Published online: 19 Jun 2019

References

  • Sharma, R. K.; Ganesan, P.; Tyagi, V. V.; Metselaar, H. S. C.; Sandaran, S. C. Developments in Organic Solid–Liquid Phase Change Materials and Their Applications in Thermal Energy Storage. Energy Convers. Manage. 2015, 95, 193–228. DOI:10.1016/j.enconman.2015.01.084.
  • Du, K.; Calautit, J.; Wang, Z.; Wu, Y.; Liu, H. A Review of the Applications of Phase Change Materials in Cooling, Heating and Power Generation in Different Temperature Ranges. Appl. Energy. 2018, 220, 242–273. 2017, 197, 354–363. DOI:10.1016/j.apenergy.2018.03.005.
  • Zhang, N.; Yuan, Y.; Cao, X.; Du, Y.; Zhang, Z.; Gui, Y. Latent Heat Thermal Energy Storage Systems with Solid-Liquid Phase Change Materials: A Review. Adv. Eng. Mater 2018, 20, 1700753.
  • Pereira da Cunha, J.; Eames, P. Thermal Energy Storage for Low and Medium Temperature Applications using Phase Change Materials—A Review. Appl. Energy. 2016, 177, 227–238. 2017, 197, 354–363. DOI:10.1016/j.apenergy.2016.05.097.
  • Tian, B.; Yang, W.; He, F.; Xie, C.; Zhang, K.; Fan, J.; Wu, J. Paraffin/Carbon Aerogel Phase Change Materials with High Enthalpy and Thermal Conductivity. Fuller. Nanotub. Car. Nanostruct. 2017, 25, 512–518. DOI:10.1080/1536383X.2017.1347638.
  • Rathod, M. K.; Banerjee, J. Thermal Stability of Phase Change Materials Used in Latent Heat Energy Storage Systems: A Review. Renew. Sust. Energ. Rev. 2013, 18, 246–258. DOI:10.1016/j.rser.2012.10.022.
  • Zhang, Y.; Li, X.; Li, J.; Ma, C.; Guo, L.; Meng, X. Solar-Driven Phase Change Microencapsulation with Efficient Ti4O7 Nanoconverter for Latent Heat Storage. Nano Energy 2018, 53, 579–586. DOI:10.1016/j.nanoen.2018.09.018.
  • Guo, Y.; Yang, W.; He, F.; Xie, C.; Fan, J.; Wu, J.; Zhang, K. Electrostatic Interaction-Based Self-Assembly of Paraffin@Graphene Microcapsules with Remarkable Thermal Conductivity for Thermal Energy Storage. Fuller. Nanotub. Car. Nanostruct. 2019, 27, 120–127. DOI:10.1080/1536383X.2018.1517754.
  • Yang, L.; Cao, X.; Zhang, N.; Xiang, B.; Zhang, Z.; Qian, B. Thermal Reliability of Typical Fatty Acids as Phase Change Materials Based on 10,000 Accelerated Thermal Cycles. Sustain. Cities Soc. 2019, 46, 101380. DOI:10.1016/j.scs.2018.12.008.
  • Zhang, J.; Wang, S. S.; Zhang, S. D.; Tao, Q. H.; Pan, L.; Wang, Z. Y.; Zhang, Z. P.; Lei, Y.; Yang, S. K.; Zhao, H. P. In Situ Synthesis and Phase Change Properties of Na2SO4·10H2O@SiO2 Solid Nanobowls toward Smart Heat Storage. J. Phys. Chem. C. 2011, 115, 20061–20066. DOI:10.1021/jp202373b.
  • Zhu, Y.; Liang, S.; Chen, K.; Gao, X.; Chang, P.; Tian, C.; Wang, J.; Huang, Y. Preparation and Properties of Nanoencapsulated n-Octadecane Phase Change Material with Organosilica Shell for Thermal Energy Storage. Energy Convers. Manage. 2015, 105, 908–917. DOI:10.1016/j.enconman.2015.08.048.
  • Liang, S.; Li, Q.; Zhu, Y.; Chen, K.; Tian, C.; Wang, J.; Bai, R. Nanoencapsulation of n-Octadecane Phase Change Material with Silica Shell through Interfacial Hydrolysis and Polycondensation in Miniemulsion. Energy 2015, 93, 1684–1692. DOI:10.1016/j.energy.2015.10.024.
  • Konuklu, Y.; Paksoy, H. O.; Unal, M.; Konuklu, S. Microencapsulation of a Fatty Acid with Poly(Melamine–Urea–Formaldehyde). Energy Convers. Manage. 2014, 80, 382–390. DOI:10.1016/j.enconman.2014.01.042.
  • Zhang, L.; Yang, W.; Jiang, Z.; He, F.; Zhang, K.; Fan, J.; Wu, J. Graphene Oxide-Modified Microencapsulated Phase Change Materials with High Encapsulation Capacity and Enhanced Leakage-Prevention Performance. Appl. Energy 2017, 197, 354–363. DOI:10.1016/j.apenergy.2017.04.041.
  • Barreneche, C.; de Gracia, A.; Serrano, S.; Elena Navarro, M.; Borreguero, A. M.; Inés Fernández, A.; Carmona, M.; Rodriguez, J. F.; Cabeza, L. F. Comparison of Three Different Devices Available in Spain to Test Thermal Properties of Building Materials Including Phase Change Materials. Appl. Energy 2013, 109, 421–427. 2017, 197, 354–363. DOI:10.1016/j.apenergy.2013.02.061.
  • Liu, C. H.; Xu, Z.; Song, Y.; Lv, P. Z.; Zhao, J. T.; Liu, C. Z.; Huo, Y. T.; Xu, B.; Zhu, C. Y.; Rao, Z. H. A Novel Shape-Stabilization Strategy for Phase Change Thermal Energy Storage. J. Mater. Chem. A. 2019, 7, 8194–8203. DOI:10.1039/C9TA01496A.
  • Konuklu, Y.; Paksoy, H. Ö. Polystyrene-Based Caprylic Acid Microencapsulation for Thermal Energy Storage. Sol. Energy Mater. Sol. Cells 2017, 159, 235–242. DOI:10.1016/j.solmat.2016.09.016.
  • Luo, R.; Wang, S.; Wang, T.; Zhu, C.; Nomura, T.; Akiyama, T. Fabrication of Paraffin@SiO2 Shape-Stabilized Composite Phase Change Material via Chemical Precipitation Method for Building Energy Conservation. Energy Build. 2015, 108, 373–380. DOI:10.1016/j.enbuild.2015.09.043.
  • He, F.; Wang, X.; Wu, D. New Approach for Sol–Gel Synthesis of Microencapsulated n-Octadecane Phase Change Material with Silica Wall Using Sodium Silicate Precursor. Energy 2014, 67, 223–233. DOI:10.1016/j.energy.2013.11.088.
  • Guo, Y.; Yang, W.; Jiang, Z.; He, F.; Zhang, K.; He, R.; Wu, J.; Fan, J. Silicone Rubber/Paraffin@Silicon Dioxide Form-Stable Phase Change Materials with Thermal Energy Storage and Enhanced Mechanical Property. Sol. Energy Mater. Sol. Cells 2019, 196, 16–24. DOI:10.1016/j.solmat.2019.03.034.
  • Yu, S.; Wang, X.; Wu, D. Microencapsulation of n-Octadecane Phase Change Material with Calcium Carbonate Shell for Enhancement of Thermal Conductivity and Serving Durability: Synthesis, Microstructure, and Performance Evaluation. Appl. Energy. 2014, 114, 632–643. 2017, 197, 354–363. DOI:10.1016/j.apenergy.2013.10.029.
  • Wang, T.; Wang, S.; Luo, R.; Zhu, C.; Akiyama, T.; Zhang, Z. Microencapsulation of Phase Change Materials with Binary Cores and Calcium Carbonate Shell for Thermal Energy Storage. Appl. Energy. 2016, 171, 113–119. 2017, 197, 354–363.
  • Jiang, Z.; Yang, W.; He, F.; Xie, C.; Fan, J.; Wu, J.; Zhang, K. Modified Phase Change Microcapsules with Calcium Carbonate and Graphene Oxide Shells for Enhanced Energy Storage and Leakage Prevention. ACS Sustainable Chem. Eng. 2018, 6, 5182–5191. DOI:10.1021/acssuschemeng.7b04834.
  • Ma, X.; Liu, Y.; Liu, H.; Zhang, L.; Xu, B.; Xiao, F. Fabrication of Novel Slurry Containing Graphene Oxide-Modified Microencapsulated Phase Change Material for Direct Absorption Solar Collector. Sol. Energy Mater. Sol. Cells 2018, 188, 73–80. DOI:10.1016/j.solmat.2018.08.021.
  • Liu, H.; Wang, X.; Wu, D. Fabrication of Graphene/TiO2/Paraffin Composite Phase Change Materials for Enhancement of Solar Energy Efficiency in Photocatalysis and Latent Heat Storage. ACS Sustainable Chem. Eng. 2017, 5, 4906–4915. DOI:10.1021/acssuschemeng.7b00321.
  • Dao, T. D.; Jeong, H. M. Novel Stearic Acid/Graphene Core–Shell Composite Microcapsule as a Phase Change Material Exhibiting High Shape Stability and Performance. Sol. Energy Mater. Sol. Cells 2015, 137, 227–234. DOI:10.1016/j.solmat.2015.02.009.
  • Alkan, C.; Kaya, K.; Sarı, A. Preparation, Thermal Properties and Thermal Reliability of Form-Stable Paraffin/Polypropylene Composite for Thermal Energy Storage. J. Polym. Environ. 2009, 17, 254–258. DOI:10.1007/s10924-009-0146-7.
  • Li, L. P.; Wang, G.; Guo, C. G. Influence of Intumescent Flame Retardant on Thermal and Flame Retardancy of Eutectic Mixed Paraffin/Polypropylene Form-Stable Phase Change Materials. Appl. Energy 2016, 162, 428–434. DOI:10.1016/j.apenergy.2015.10.103.
  • Kaygusuz, K.; Sari, A. High Density Polyethylene/Paraffin Composites as Form-Stable Phase Change Material for Thermal Energy Storage. Energy. Energy Sources Part A 2007, 29, 261–270. DOI:10.1080/009083190957568.
  • Cheng, W-l.; Zhang, R-m.; Xie, K.; Liu, N.; Wang, J. Heat Conduction Enhanced Shape-Stabilized Paraffin/HDPE Composite PCMs by Graphite Addition: Preparation and Thermal Properties. Sol. Energy Mater. Sol. Cells 2010, 94, 1636–1642. DOI:10.1016/j.solmat.2010.05.020.
  • Wang, Y.; Xia, T. D.; Feng, H. X.; Zhang, H. Stearic Acid/Polymethylmethacrylate Composite as Form-Stable Phase Change Materials for Latent Heat Thermal Energy Storage. Renew. Energy 2011, 36, 1814–1820. DOI:10.1016/j.renene.2010.12.022.
  • Sari, A.; Alkan, C.; Karaipekli, A.; Onal, A. Preparation, Characterization and Thermal Properties of Styrene Maleic Anhydride Copolymer (SMA)/Fatty Acid Composites as Form Stable Phase Change Materials. Energy Convers. Manage. 2008, 49, 373–380. DOI:10.1016/j.enconman.2007.06.006.
  • Zhang, Y. P.; Lin, K. P.; Yang, R.; Di, H. F.; Jiang, Y. Preparation, Thermal Performance and Application of Shape-Stabilized PCM in Energy Efficient Buildings. Energy Build 2006, 38, 1262–1269. DOI:10.1016/j.enbuild.2006.02.009.
  • Jin, X. M.; Li, J. L.; Xue, P.; Jia, M. Y. Preparation and Characterization of PVC-Based Form-Stable Phase Change Materials. Sol. Energy Mater. Sol. Cells 2014, 130, 435–441. DOI:10.1016/j.solmat.2014.07.013.
  • Gao, Z.; Zhao, Q.; Li, C.; Wang, S.; Dong, L.; Hu, G.-H.; Yang, Q.; Xiong, C. A Novel Fluid-Filler/Polymer Composite as High-Temperature Thermally Conductive and Electrically Insulating Material. Compos. Sci. Technol. 2017, 150, 128–134. DOI:10.1016/j.compscitech.2017.07.016.
  • Chiu, H. T.; Sukachonmakul, T.; Kuo, M. T.; Wang, Y. H.; Wattanakul, K. Surface Modification of Aluminum Nitride by Polysilazane and Its Polymer-Derived Amorphous Silicon Oxycarbide Ceramic for the Enhancement of Thermal Conductivity in Silicone Rubber Composite. Appl. Surf. Sci 2014, 292, 928–936. DOI:10.1016/j.apsusc.2013.12.081.
  • Gao, B. Z.; Xu, J. Z.; Peng, J. J.; Kang, F. Y.; Du, H. D.; Li, J.; Chiang, S. W.; Xu, C. J.; Hu, N.; Ning, X. S. Experimental and Theoretical Studies of Effective Thermal Conductivity of Composites Made of Silicone Rubber and Al2O3 Particles. Thermochim. Acta 2015, 614, 1–8.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.