511
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

Silicon and reduced graphene oxide employed as additives to enhance the performances of artificial graphite anode for lithium-ion battery

, &
Pages 887-894 | Received 02 Aug 2019, Accepted 09 Aug 2019, Published online: 19 Aug 2019

References

  • Nitta, N.; Wu, F. X.; Lee, J. T.; Yushin, G. Li-Ion Battery Materials: Present and Future. Mater. Today 2015, 18, 252–264.
  • Wu, Y. P.; Rahm, E.; Holze, R. Carbon Anode Materials for Lithium Ion Batteries. J. Power Sources 2003, 114, 228–236. DOI:10.1016/S0378-7753(02)00596-7.
  • Pan, Q. L.; Zhao, J. G.; Qu, W. S.; Liu, R.; Li, N.; Xing, B. Y.; Jiang, S.; Pang, M. J.; Zhao, L.; Zhang, Y. C.; et al. Facile Synthesis of the 3D Framework Si@N-Doped C/Reduced Graphene Oxide Composite by Polymer Network Method for Highly Stable Lithium Storage. J. Phys. Chem. Solids 2019, 133, 92–99. DOI:10.1016/j.jpcs.2019.05.010.
  • Ji, L. W.; Lin, Z.; Alcoutlabi, M.; Zhang, X. W. Recent Developments in Nanostructured Anode Materials for Rechargeable Lithium-Ion Batteries. Energy Environ. Sci. 2011, 4, 2682–2699. DOI:10.1039/c0ee00699h.
  • Zuo, X. X.; Zhu, J.; Muller-Buschbaum, P.; Cheng, Y. J. Silicon Based Lithium-Ion Battery Anodes: A Chronicle Perspective Review. Nano Energy. 2017, 31, 113–143.
  • Dimov, N.; Kugino, S.; Yoshio, M. Carbon-Coated Silicon as Anode Material for Lithium Ion Batteries: Advantages and Limitations. Electrochim. Acta 2003, 48, 1579–1587. DOI:10.1016/S0013-4686(03)00030-6.
  • McDowell, M. T.; Lee, S. W.; Nix, W. D.; Cui, Y. 25th Anniversary Article: Understanding the Lithiation of Silicon and Other Alloying Anodes for Lithium-Ion Batteries. Adv. Mater. 2013, 25, 4966–4984. DOI:10.1002/adma.201301795.
  • Feng, K.; Li, M.; Liu, W. W.; Kashkooli, A. G.; Xiao, X. C.; Cai, M.; Chen, Z. W. Silicon-Based Anodes for Lithium-Ion Batteries: From Fundamentals to Practical Applications. Small 2018, 14, 1702737–1702143. DOI:10.1002/smll.201702737.
  • Wu, H.; Cui, Y. Designing Nanostructured Si Anodes for High Energy Lithium Ion Batteries. Nano Today 2012, 7, 414–429. DOI:10.1016/j.nantod.2012.08.004.
  • Su, X.; Wu, Q. L.; Li, J. C.; Xiao, X. C.; Lott, A.; Lu, W. Q.; Sheldon, B. W.; Wu, J. Silicon-Based Nanomaterials for Lithium-Ion Batteries: A Review. Adv. Energy Mater. 2014, 4, 1300882.
  • Ko, M.; Chae, S.; Ma, J.; Kim, N.; Lee, H.-W.; Cui, Y.; Cho, J. Scalable Synthesis of Silicon-Nanolayer-Embedded Graphite for High-Energy Lithium-Ion Batteries. Nat. Energy 2016, 1, 16113–16120.
  • Lee, J. K.; Oh, C.; Kim, N.; Hwang, J. Y.; Sun, Y. K. Rational Design of Silicon-Based Composites for High-Energy Storage Devices. J. Mater. Chem. A. 2016, 4, 5366–5384. DOI:10.1039/C6TA00265J.
  • Wang, F.; Wang, H. Y.; Mao, J. Aligned-Graphene Composites: A Review. J. Mater. Sci. 2019, 54, 36–61. DOI:10.1007/s10853-018-2849-4.
  • Brownson, D. A. C.; Kampouris, D. K.; Banks, C. E. Graphene Electrochemistry: Fundamental Concepts through to Prominent Applications. Chem. Soc. Rev. 2012, 41, 6944–6976. DOI:10.1039/c2cs35105f.
  • Wang, F.; Mao, J. Nacre-like Graphene Oxide/Waterborne Styrene Butadiene Rubber Composite and Its Teusable anti-Corrosion Behavior on Al-2024. Prog. Org. Coat. 2019, 132, 191–200. DOI:10.1016/j.porgcoat.2019.03.048.
  • Zhu, J. X.; Yang, D.; Yin, Z. Y.; Yan, Q. Y.; Zhang, H. Graphene and Graphene-Based Materials for Energy Storage Applications. Small 2014, 10, 3480–3498. DOI:10.1002/smll.201303202.
  • Zhang, X. T.; Sui, Z. Y.; Xu, B.; Yue, S. F.; Luo, Y. J.; Zhan, W. C.; Liu, B. Mechanically Strong and Highly Conductive Graphene Aerogel and Its Use as Electrodes for Electrochemical Power Sources. J. Mater. Chem. 2011, 21, 6494–6497. DOI:10.1039/c1jm10239g.
  • Liu, X. H.; Zhong, L.; Huang, S.; Mao, S. X.; Zhu, T.; Huang, J. Y. Size-Dependent Fracture of Silicon Nanoparticles during Lithiation. ACS Nano. 2012, 6, 1522–1531. DOI:10.1021/nn204476h.
  • Kim, S. Y.; Kim, B. H.; Yang, K. S. Preparation and Electrochemical Characteristics of a Polyvinylpyrrolidone-Stabilized Si/Carbon Composite Nanofiber Anode for a Lithium Ion Battery. J. Electroanal. Chem. 2013, 705, 52–56. DOI:10.1016/j.jelechem.2013.07.025.
  • Liu, X.; Du, Y. C.; Hu, L. Y.; Zhou, X. S.; Li, Y. F.; Dai, Z. H.; Bao, J. C. Understanding the Effect of Different Polymeric Surfactants on Enhancing the Silicon/Reduced Graphene Oxide Anode Performance. J. Phys. Chem. C. 2015, 119, 5848–5854. DOI:10.1021/jp512152f.
  • Zhang, J. L.; Yang, H. J.; Shen, G. X.; Cheng, P.; Zhang, J. Y.; Guo, S. W. Reduction of Graphene Oxide via L-Ascorbic Acid. Chem. Commun. (Camb.). 2010, 46, 1112–1114. DOI:10.1039/b917705a.
  • Sui, Z. Y.; Zhang, X. T.; Lei, Y.; Luo, Y. J. Easy and Green Synthesis of Reduced Graphite Oxide-Based Hydrogels. Carbon 2011, 49, 4314–4321. DOI:10.1016/j.carbon.2011.06.006.
  • Zhang, H.; Zong, P.; Chen, M.; Jin, H.; Bai, Y.; Li, S. W.; Ma, F.; Xu, H.; Lian, K. In, Situ Synthesis of Multilayer Carbon Matrix Decorated with Copper Particles: Enhancing the Performance of Si as Anode for Li-Ion Batteries. Acs Nano. 2019, 13, 3054–3062. DOI:10.1021/acsnano.8b08088.
  • Wu, H.; Yu, G. H.; Pan, L. J.; Liu, N. A.; McDowell, M. T.; Bao, Z. A.; Cui, Y. Stable Li-Ion Battery Anodes by in-Situ Polymerization of Conducting Hydrogel to Conformally Coat Silicon Nanoparticles. Nat. Commun. 2013, 4, 1943–1948.
  • Wang, F.; Mao, J. The Self-Aligning Behaviour of Graphene Nanosheets in the Styrene Butadiene Rubber by Controlling Curing Temperature. Fullerenes, Nanotubes, Carbon Nanostruct. 2018, 26, 61–68.
  • Ahn, I.-K.; Lee, Y.-J.; Na, S.; Lee, S.-Y.; Nam, D.-H.; Lee, J.-H.; Joo, Y.-C. Improved Battery Performance of Nanocrystalline Si Anodes Utilized by Radio Frequency (RF) Sputtered Multifunctional Amorphous Si Coating Layers. ACS Appl. Mater. Interfaces. 2018, 10, 2242–2248. DOI:10.1021/acsami.7b17890.
  • Sun, A.; Zhong, H.; Zhou, X.; Tang, J.; Jia, M.; Cheng, F.; Wang, Q.; Yang, J. Scalable Synthesis of Carbon-Encapsulated Nano-Si on Graphite Anode Material with High Cyclic Stability for Lithium-Ion Batteries. Appl. Surf. Sci. 2019, 470, 454–461.
  • Chen, H.; Hou, X.; Chen, F.; Wang, S.; Wu, B.; Ru, Q.; Qin, H.; Xia, Y. Milled Flake Graphite/Plasma Nano-Silicon@Carbon Composite with Void Sandwich Structure for High Performance as Lithium Ion Battery Anode at High Temperature. Carbon 2018, 130, 433–440. DOI:10.1016/j.carbon.2018.01.021.
  • Liu, N. A.; Hu, L. B.; McDowell, M. T.; Jackson, A.; Cui, Y. Prelithiated Silicon Nanowires as an Anode for Lithium Ion Batteries. Acs Nano. 2011, 5, 6487–6493. DOI:10.1021/nn2017167.
  • Chen, S.; Shen, L.; Van, P. A.; Maier, J.; Yu, Y. Dual-Functionalized Double Carbon Shells Coated Silicon Nanoparticles for High Performance Lithium-Ion Batteries. Adv Mater. 2017, 29, 1605650–1605657.
  • Chen, Z. R.; Zhang, Y.; Wang, X. L.; Sun, W. P.; Dou, S. X.; Huang, X.; Shi, B. Fast-Pulverization Enabled Simultaneous Enhancement on Cycling Stability and Rate Capability of C@NiFe2O4 Hierarchical Fibrous Bundle. J. Power Sources 2017, 363, 209–217. DOI:10.1016/j.jpowsour.2017.07.099.
  • Lu, L.; Gao, Y. L.; Yang, Z. Z.; Wang, C.; Wang, J. G.; Wang, H. Y.; Jiang, Q. C. Template-Free Synthesis of Mesoporous Nanoring-like Zn-Co Mixed Oxides with High Lithium Storage Performance. J. Power Sources 2018, 384, 256–263. DOI:10.1016/j.jpowsour.2018.03.005.
  • Xing, Y.; Shen, T.; Guo, T.; Wang, X. L.; Xia, X. H.; Gu, C. D.; Tu, J. P. A Novel Durable Double-Conductive Core-Shell Structure Applying to the Synthesis of Silicon Anode for Lithium Ion Batteries. J. Power Sources 2018, 384, 207–213. DOI:10.1016/j.jpowsour.2018.02.051.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.