209
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Carbon nanotubes accelerated growth by iron nanoparticles under microwave heating

, , , , , & show all
Pages 920-927 | Received 27 Aug 2019, Accepted 28 Aug 2019, Published online: 07 Oct 2019

References

  • Iijima, S. Helical Microtubules of Graphitic Carbon. Nature 1991, 354, 56–58. DOI: 10.1038/354056a0.
  • Ebbesen, T. W.; Ajayan, P. M. Large-Scale Synthesis of Carbon Nanotubes. Nature 1992, 358, 220–222. DOI: 10.1038/358220a0.
  • Guo, T.; Nikolaev, P.; Rinzler, A. G.; Tomanek, D.; Colbert, D. T.; Smalley, R. Self-Assembly of Tubular Fullerenes. J. Phys. Chem. 1995, 99, 10694–10697. DOI: 10.1021/j100027a002.
  • Thess, A.; Lee, R.; Nikolaev, P.; Dai, H.; Petit, P.; Robert, J.; Xu, C.; Lee, Y. H.; Kim, S. G.; Rinzler, A. G.; et al. Crystalline Ropes of Metallic Carbon Nanotubes. Science 1996, 273, 483–487. DOI: 10.1126/science.273.5274.483.
  • Calgaro, C. O.; Perez-Lopez, O. W. Graphene and Carbon Nanotubes by CH4 Decomposition over CoAl Catalysts. Mater. Chem. Phys. 2019, 226, 6–19. DOI: 10.1016/j.matchemphys.2018.12.094.
  • Li, W. Z.; Xie, S. S.; Qian, L. X.; Chang, B. H.; Zou, B. S.; Zhou, W.; Zhao, Y.; Wang, R. A. G. Large-Scale Synthesis of Aligned Carbon Nanotubes. Science 1996, 274, 1701–1703. DOI: 10.1126/science.274.5293.1701.
  • Sen, R.; Govindaraj, A.; Rao, C. N. R. Carbon Nanotubes by the Metallocene Route. Chem. Phys. Lett. 1997, 267, 276–280. DOI: 10.1016/S0009-2614(97)00080-8.
  • Rao, C.; Sen, R. Large Aligned-Nanotube Bundles from Ferrocene Pyrolysis. Chem. Commun. 1998, 15, 1525–1526. DOI: 10.1039/a802258e.
  • Rausch, M. D. Ferrocene and Related Organometallic π-Complexes. VI. Thermal Decomposition of Diferrocenylmercury. Inorg. Chem. 1962, 1, 414–417. DOI: 10.1021/ic50002a044.
  • Bhattacharjee, A.; Rooj, A.; Roy, D.; Roy, M. Thermal Decomposition Study of Ferrocene [(C5H5)2Fe]. J. Exp. Phys. 2014, 2014, 1–8. DOI: 10.1155/2014/513268.
  • Yang, Y. Z.; Liu, X. G.; Jia, H. S.; Xu, B. S. How Do Vapor Grown Carbon Nanofibers Nucleate and Grow from Deoiled Asphalt? Mater. Chem. Phys. 2011, 126, 424–431. DOI: 10.1016/j.matchemphys.2010.10.044.
  • Zhu, H.; Bai, Y.; Cui, H.; Liu, L. Facile Synthesis of Carbon Nanotubes via Low Temperature Pyrolysis of Ferrocene. J. Cryst. Growth 2014, 404, 44–47. DOI: 10.1016/j.jcrysgro.2014.06.048.
  • Bhatia, R.; Prasad, V. Synthesis of Multiwall Carbon Nanotubes by Chemical Vapor Deposition of Ferrocene Alone. Solid State Commun. 2010, 150, 311–315. DOI: 10.1016/j.ssc.2009.11.023.
  • Shaijumon, M.; Ramaprabhu, S. Studies of Yield and Nature of Carbon Nanostructures Synthesized by Pyrolysis of Ferrocene and Hydrogen Adsorption Studies of Carbon Nanotubes. Int. J. Hydrogen Energy 2005, 30, 311–317. DOI: 10.1016/j.ijhydene.2004.04.005.
  • Lee, Y. T.; Kim, N. S.; Park, J.; Han, J. B.; Choi, Y. S.; Ryu, H.; Lee, H. J. Temperature-Dependent Growth of Carbon Nanotubes by Pyrolysis of Ferrocene and Acetylene in the Range between 700 and 1000 °C. Chem. Phys. Lett. 2003, 372, 853–859. DOI: 10.1016/S0009-2614(03)00529-3.
  • Kamalakaran, R.; Terrones, M.; Seeger, T.; Kohler-Redlich, P.; Rühle, M.; Kim, Y. A.; Hayashi, T.; Endo, M. Synthesis of Thick and Crystalline Nanotube Arrays by Spray Pyrolysis. Appl. Phys. Lett. 2000, 77, 3385–3387. DOI: 10.1063/1.1327611.
  • Fu, D.; Zeng, X.; Zou, J.; Qian, H.; Li, X.; Xiong, X. Direct Synthesis of Y-Junction Carbon Nanotubes by Microwave-Assisted Pyrolysis of Methane. Mater. Chem. Phys. 2009, 118, 501–505. DOI: 10.1016/j.matchemphys.2009.08.032.
  • Zhan, M. M.; Pan, G. H.; Wang, Y. P.; Kuang, T.; Zhou, F. F. Ultrafast Carbon Nanotube Growth by Microwave Irradiation. Diam. Relat. Mater. 2017, 77, 65–71. DOI: 10.1016/j.diamond.2017.06.001.
  • Hemraj-Benny, T.; Tobar, N.; Carrero, N.; Sumner, R.; Pimentel, L.; Emeran, G. Microwave-Assisted Synthesis of Single-Walled Carbon Nanotube-Supported Ruthenium Nanoparticles for the Catalytic Degradation of Congo Red Dye. Mater. Chem. Phys. 2018, 216, 72–81. DOI: 10.1016/j.matchemphys.2018.05.081.
  • Atwater, J. E.; Wheeler, R. R. Complex Permittivities and Dielectric Relaxation of Granular Activated Carbons at Microwave Frequencies between 0.2 and 26 GHz. Carbon 2003, 41, 1801–1807. DOI: 10.1016/S0008-6223(03)00150-7.
  • Kharissova, O. V.; Cardenas, J. R. Advance in Methods of Forming Vertically Aligned Carbon Nanotubes by Microwave. Phys. Status Solidi C 2005, 2, 3063–3066. DOI: 10.1002/pssc.200460754.
  • Menendez, J. A.; Arenillas, A.; Fidalgo, B.; Fernandez, Y.; Zubizarreta, L.; Calvo, E. G. Microwave Heating Processes Involving Carbon Materials. Fuel Process Technol. 2010, 91, 1–8. DOI: 10.1016/j.fuproc.2009.08.021.
  • Liu, Z.; Wang, J.; Kushvaha, V.; Poyraz, S.; Tippur, H.; Park, S.; Kim, M.; Liu, Y.; Bar, J.; Chen, H.; et al. Poptube Approach for Ultrafast Carbon Nanotube Growth. Chem. Commun. 2011, 47, 9912–9914. DOI: 10.1039/c1cc13359d.
  • Nie, H.; Cui, M.; Russell, T. P. A Route to Rapid Carbon Nanotube Growth. Chem. Commun. 2013, 49, 5159–5161. DOI: 10.1039/c3cc41746h.
  • Menendez, J. A.; Juarez-Perez, E. J.; Ruisanchez, E.; Bermudez, J. M.; Arenillas, A. Ball Lightning Plasma and Plasma Arc Formation during the Microwave Heating of Carbons. Carbon 2011, 49, 346–349. DOI: 10.1016/j.carbon.2010.09.010.
  • Bajpai, R.; Wagner, H. D. Fast Growth of Carbon Nanotubes Using a Microwave Oven. Carbon 2015, 82, 327–336. DOI: 10.1016/j.carbon.2014.10.077.
  • Yoshida, H.; Shimizu, T.; Uchiyama, T.; Kohno, H.; Homma, Y.; Takeda, S. Atomic-Scale Analysis on the Role of Molybdenum in Iron-Catalyzed Carbon Nanotube Growth. Nano Lett. 2009, 9, 3810–3815. DOI: 10.1021/nl9019903.
  • Lin, M.; Tan, J. P. Y.; Boothroyd, C.; Loh, K. P.; Tok, E. S.; Foo, Y. Dynamical Observation of Bamboo-like Carbon Nanotube Growth. Nano Lett. 2007, 7, 2234–2238. DOI: 10.1021/nl070681x.
  • Esconjauregui, S.; Whelan, C. M.; Maex, K. The Reasons Why Metals Catalyze the Nucleation and Growth of Carbon Nanotubes and Other Carbon Nanomorphologies. Carbon 2009, 47, 659–669. DOI: 10.1016/j.carbon.2008.10.047.
  • Arora, N.; Sharma, N. N. Arc Discharge Synthesis of Carbon Nanotubes: Comprehensive Review. Diam. Relat. Mater. 2014, 50, 135–150. DOI: 10.1016/j.diamond.2014.10.001.
  • Choi, C. J.; Tolochko, O.; Kim, B. K. Preparation of Iron Nanoparticles by Chemical Vapor Condensation. Mater. Lett. 2002, 56, 289–294. DOI: 10.1016/S0167-577X(02)00457-3.
  • Andrews, R.; Jacques, D.; Rao, A. M.; Derbyshire, F.; Qian, D.; Fan, X.; Dickey, E. C.; Chen, J. Continuous Production of Aligned Carbon Nanotubes: A Step Closer to Commercial Realization. Chem. Phys. Lett. 1999, 303, 467–474. DOI: 10.1016/S0009-2614(99)00282-1.
  • Pentsak, E. O.; Gordeev, E. G.; Ananikov, V. P. Noninnocent Nature of Carbon Support in Metal/Carbon Catalysts: Etching/Pitting vs Nanotube Growth under Microwave Irradiation. ACS Catal. 2014, 4, 3806–3814. DOI: 10.1021/cs500934g.
  • Ding, F.; Rosén, A.; Bolton, K. Size Dependence of the Coalescence and Melting of Iron Clusters: A Molecular-Dynamics Study. Phys. Rev. B 2004, 70, 1–6. DOI: 10.1103/PhysRevB.70.075416.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.