97
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Microwave rapid synthesis of CuxO@polypyrrole nanofibre (PpyNF) composites for supercapacitors

ORCID Icon, , , , & ORCID Icon
Pages 947-952 | Received 28 Aug 2019, Accepted 08 Sep 2019, Published online: 16 Sep 2019

References

  • Wang, G.; Zhang, L.; Zhang, J. C. A Review of Electrode Materials for Electrochemical Supercapacitors. Chemical Society Reviews. Soc. Rev. 2012, 41, 797–828. DOI:10.1039/C1CS15060J.
  • Miller, J. R.; Simon, P. Materials Science. Electrochemical Capacitors for Energy Management. Science 2008, 321, 651–652. DOI:10.1126/science.1158736.
  • Liu, M. K.; Li, B. M.; Zhou, H.; Chen, C.; Liu, Y. Q.; Liu, T. X. Facile One-Step Hydrothermal Preparation of Molybdenum Disulfide/Carbon Composite Forusein Supercapacitor. Chem. Commun. 2017, 53, 2810–2813.
  • Ma, Y.; Hou, C. P.; Zhang, H. P.; Zhang, Q. Y.; Liu, H.; Wu, S. D.; Guo, Z. H. Superior Capacitive Performance Enabled by Edge-Oriented and Interlayer-Expanded MoS2 Nanosheets Anchored on Reduced Graphene Oxide Sheets. Electrochim. Acta 2019, 315, 114–123.
  • Du, X. J.; Xia, C. Q.; Li, Q.; Wang, X. H.; Yang, T.; Yin, F. X. Facile Fabrication of CuxO Composite Nanoarray on Nanoporous Copper as Supercapacitor Electrode. Mater. Lett. 2018, 233, 170–173. DOI:10.1016/j.matlet.2018.09.009.
  • Sheikhzadeh, M.; Sanjabi, S.; Gorji, M.; Khabazian, S. Nano Composite Foam Layer of CuO/Graphene Oxide (GO) for High Performance Supercapacitor. Synthetic. Met. 2018, 244, 10–14. DOI:10.1016/j.synthmet.2018.06.009.
  • Bai, J.; Yang, L.; Dai, B.; Ding, Y. J.; Wang, Q.; Han, J. C.; Zhu, J. Q. Synthesis of CuO-Cu2O@Graphene Nanosheet Arrays with Accurate Hybrid Nanostructures and Tunable Electrochemical Properties. Appl. Surf. Sci 2018, 452, 259–267. DOI:10.1016/j.apsusc.2018.05.062.
  • Mishra, A. K.; Nayak, A. K.; Das, A. K.; Pradhan, D. Microwave-Assisted Solvothermal Synthesis of Cupric Oxide Nanostructures for High-Performance Supercapacitor. J. Phys. Chem. C 2018, 122, 11249–11261. DOI:10.1021/acs.jpcc.8b02210.
  • Singh, P. K.; Das, A. K.; Hatui, G.; Nayak, G. C. Shape Controlled Green Synthesis of CuO Nanoparticles through Ultrasonic Assisted Electrochemical Discharge Process and Its Application for Supercapacitor. Mater. Chem. Phys. 2017, 198, 16–34. DOI:10.1016/j.matchemphys.2017.04.070.
  • Xu, W. N.; Dai, S.; Liu, G. L.; Xi, Y.; Hu, C. G.; Wang, X. CuO Nanoflowers Growing on Carbon Fiber Fabric for Flexible High-Performance Supercapacitors. Electrochim. Acta 2016, 203, 1–8. DOI:10.1016/j.electacta.2016.03.170.
  • Dubal, D. P.; Gund, G. S.; Holze, R.; Lokhande, C. D. Mild Chemical Strategy to Grow Micro-Roses and Micro-Woolen like Arranged CuO Nanosheets for High Performance Supercapacitors. J. Power. Sourc. 2013, 242, 687–698. DOI:10.1016/j.jpowsour.2013.05.013.
  • Vivek, E.; Senthilkumar, N.; Pramothkumar, A.; Vimalan, M.; Potheher, I. V. Enhanced Photocatalytic Properties of Zinc-Doped CuO Decorated with Silver Obtained by Microwave-Assisted Hydrothermal Method: Statistical Factorial Design. Phys. B: Condensed. Matter. 2019, 566, 96–102.
  • Volanti, D. P.; Keyson, D.; Cavalcante, L. S.; Simoes, A. Z.; Joya, M. R.; Longo, E.; Varela, J. A.; Pizani, P. S.; Souza, A. G. Synthesis and Characterization of CuO Flower-Nanostructure Processing by a Domestic Hydrothermal Microwave. J. Alloys Compd 2008, 459, 537–542. DOI:10.1016/j.jallcom.2007.05.023.
  • Vaseem, M.; Umar, A.; Kim, S. H.; Hahn, Y. B. Low-Temperature Synthesis of Flower-Shaped CuO Nanostructures by Solution Process: formation Mechanism and Structural Properties. J. Phys. Chem. C 2008, 112, 5729–5735. DOI:10.1021/jp710358j.
  • Qi, X.; Huang, Y.; Klapper, M.; Boey, F.; Huang, W.; Feyter, S. D.; Mullen, K.; Zhang, H. In Situ Modification of Three-Dimensional Polyphenylene Dendrimertemplated CuO Rice-Shaped Architectures with Electron Beam Irradiation. J. Phys. Chem. C 2010, 114, 13465–13470. DOI:10.1021/jp1050468.
  • Jayaprakash, J.; Srinivasan, N.; Chandrasekaran, P.; Girija, E. K. Synthesis and Characterization of Cluster of Grapes like Pure and Zinc-Doped CuO Nanoparticles by Solegel Method. Spectrochim. Spectrochim. Acta Mol. Biomol. Spectrosc. 2015, 136, 1803–1806.
  • Liu, H. J.; Zhao, Q.; Wang, K. W.; Lu, Z.; Feng, F.; Guo, Y. Facile Synthesis of Polypyrrole Nanofiber (PPyNF)/NiOx Composites by a Microwave Method and Application in Supercapacitors. RSC Adv. 2019, 9, 6890–6897. DOI:10.1039/C8RA09666J.
  • Bi, Y. H.; Nautiyal, A.; Zhang, H. P.; Luo, J. J.; Zhang, X. Y. One-Pot Microwave Synthesis of NiO/MnO2 Composite as a Highperformance Electrode Material for Supercapacitors. Electrochim. Acta 2018, 260, 952–958.
  • Zhang, Y. X.; Manohar, S. K. Bulk synthesis of polypyrrole nanofibers by a seeding approach. J. Am. Chem. Soc. 2004, 126, 12714–12715. DOI:10.1021/ja046359v.
  • Chu, Y.; Xiong, S.; Li, B.; Qian, Y. T.; Xi, B. J. Fabrication of Cu2O@Cu2O Core − Shell Nanoparticles and Conversion to Cu2O@Cu Core − Shell Nanoparticles in Solution. Chemelectrochem. 2016, 3, 1347–1353.
  • Li, Y.; Chang, S.; Liu, X.; Huang, J.; Yin, J.; Wang, G.; Cao, D. Nanostructured CuO Directly Grown on Copper Foam and Their Supercapacitance Performance. Electrochim. Acta 2012, 85, 393–398. DOI:10.1016/j.electacta.2012.07.127.
  • Wang, G.; Huang, J.; Chen, S.; Gao, Y.; Cao, D. Preparation and Supercapacitance of CuO Nanosheet Arrays Grown on Nickel Foam. J. Power. Sourc. 2011, 196, 5756–5760. DOI:10.1016/j.jpowsour.2011.02.049.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.