187
Views
7
CrossRef citations to date
0
Altmetric
Proceedings of the 14th International Conference “Advanced Carbon Nanostructures” (ACNS’2019)

Diameter and metal-dependent growth properties of inner tubes inside metallocene-filled single-walled carbon nanotubes

, , &
Pages 20-26 | Received 14 Jun 2019, Accepted 19 Sep 2019, Published online: 14 Oct 2019

References

  • Saito, R.; Dresselhaus, G.; Dresselhaus, M. S. Physical Properties of Carbon Nanotubes; Imperial College Press: London, 1998.
  • Kharlamova, M. V. Advances in Tailoring the Electronic Properties of Single-Walled Carbon Nanotubes. Prog. Mater. Sci. 2016, 77, 125–211. DOI: 10.1016/j.pmatsci.2015.09.001.
  • Kharlamova, M. V. Electronic Properties of Pristine and Modified Single-Walled Carbon Nanotubes. Phys-Usp. 2013, 56, 1047–1073. DOI: 10.3367/UFNr.0183.201311a.1145.
  • Chiang, W. H.; Sankaran, R. M. Linking Catalyst Composition to Chirality Distributions of as-Grown Single-Walled Carbon Nanotubes by Tuning NixFe1-x Nanoparticles. Nature Mater. 2009, 8, 882–886. DOI: 10.1038/nmat2531.
  • Ghorannevis, Z.; Kato, T.; Kaneko, T.; Hatakeyama, R. Narrow-Chirality Distributed Single-Walled Carbon Nanotube Growth from Nonmagnetic Catalyst. J. Am. Chem. Soc. 2010, 132, 9570–9572. DOI: 10.1021/ja103362j.
  • He, M. S.; Jiang, H.; Liu, B. L.; Fedotov, P. V.; Chernov, A. I.; Obraztsova, E. D.; Cavalca, F.; Wagner, J. B.; Hansen, T. W.; Anoshkin, I. V.; et al. Chiral-Selective Growth of Single-Walled Carbon Nanotubes on Lattice-Mismatched Epitaxial Cobalt Nanoparticles. Sci. Rep. 2013, 3, 1460. DOI: 10.1038/srep01460.
  • Yang, F.; Wang, X.; Zhang, D. Q.; Yang, J.; Luo, D.; Xu, Z. W.; Wei, J. K.; Wang, J. Q.; Xu, Z.; Peng, F.; et al. Chirality-Specific Growth of Single-Walled Carbon Nanotubes on Solid Alloy Catalysts. Nature 2014, 510, 522–524. DOI: 10.1038/nature13434.
  • Zhao, Q. C.; Xu, Z. W.; Hu, Y.; Ding, F.; Zhang, J. Chemical Vapor Deposition Synthesis of near-Zigzag Single-Walled Carbon Nanotubes with Stable Tube-Catalyst Interface. Sci. Adv. 2016, 2, e1501729. DOI: 10.1126/sciadv.1501729.
  • Fagan, J. A.; Haroz, E. H.; Ihly, R.; Gui, H.; Blackburn, J. L.; Simpson, J. R.; Lam, S.; Walker, A. R. H.; Doorn, S. K.; Zheng, M. Isolation of > 1 nm Diameter Single-Wall Carbon Nanotube Species Using Aqueous Two-Phase Extraction. ACS Nano 2015, 9, 5377–5390. DOI: 10.1021/acsnano.5b01123.
  • Green, A. A.; Hersam, M. C. Nearly Single-Chirality Single-Walled Carbon Nanotubes Produced via Orthogonal Iterative Density Gradient Ultracentrifugation. Adv. Mater. 2011, 23, 2185–2190. DOI: 10.1002/adma.201100034.
  • Liu, H. P.; Nishide, D.; Tanaka, T.; Kataura, H. Large-Scale Single-Chirality Separation of Single-Wall Carbon Nanotubes by Simple Gel Chromatography. Nat. Commun. 2011, 2, 309. DOI: 10.1038/ncomms1313.
  • Tu, X. M.; Manohar, S.; Jagota, A.; Zheng, M. DNA Sequence Motifs for Structure-Specific Recognition and Separation of Carbon Nanotubes. Nature 2009, 460, 250–253. DOI: 10.1038/nature08116.
  • Einarsson, E.; Murakami, Y.; Kadowaki, M.; Maruyama, S. Growth Dynamics of Vertically Aligned Single-Walled Carbon Nanotubes from in Situ Measurements. Carbon 2008, 46, 923–930. DOI: 10.1016/j.carbon.2008.02.021.
  • Picher, M.; Anglaret, E.; Arenal, R.; Jourdain, V. Self-Deactivation of Single-Walled Carbon Nanotube Growth Studied by in Situ Raman Measurements. Nano Lett. 2009, 9, 542–547. DOI: 10.1021/nl802661z.
  • Yasuda, S.; Futaba, D. N.; Yamada, T.; Yumura, M.; Hata, K. Gas Dwell Time Control for Rapid and Long Lifetime Growth of Single-Walled Carbon Nanotube Forests. Nano Lett. 2011, 11, 3617–3623. DOI: 10.1021/nl201416c.
  • Rao, R.; Liptak, D.; Cherukuri, T.; Yakobson, B. I.; Maruyama, B. In Situ Evidence for Chirality-Dependent Growth Rates of Individual Carbon Nanotubes. Nature Mater. 2012, 11, 213–216. DOI: 10.1038/nmat3231.
  • Liu, B. L.; Liu, J.; Tu, X. M.; Zhang, J. L.; Zheng, M.; Zhou, C. W. Chirality-Dependent Vapor-Phase Epitaxial Growth and Termination of Single-Wall Carbon Nanotubes. Nano Lett. 2013, 13, 4416–4421. DOI: 10.1021/nl402259k.
  • Govindaraj, A.; Satishkumar, B. C.; Nath, M.; Rao, C. N. R. Metal Nanowires and Intercalated Metal Layers in Single-Walled Carbon Nanotube Bundles. Chem. Mater. 2000, 12, 202–205. DOI: 10.1021/cm990546o.
  • Corio, P.; Santos, A. P.; Santos, P. S.; Temperini, M. L. A.; Brar, V. W.; Pimenta, M. A.; Dresselhaus, M. S. Characterization of Single Wall Carbon Nanotubes Filled with Silver and with Chromium Compounds. Chem. Phys. Lett. 2004, 383, 475–480. DOI: 10.1016/j.cplett.2003.11.061.
  • Borowiak-Palen, E.; Mendoza, E.; Bachmatiuk, A.; Rummeli, M. H.; Gemming, T.; Nogues, J.; Skumryev, V.; Kalenczuk, R. J.; Pichler, T.; Silva, S. R. P. Iron Filled Single-Wall Carbon Nanotubes - A Novel Ferromagnetic Medium. Chem. Phys. Lett. 2006, 421, 129–133. DOI: 10.1016/j.cplett.2006.01.072.
  • Kharlamova, M. V.; Niu, J. J. Comparison of Metallic Silver and Copper Doping Effects on Single-Walled Carbon Nanotubes. Appl. Phys. A 2012, 109, 25–29. DOI: 10.1007/s00339-012-7091-3.
  • Kharlamova, M. V.; Niu, J. J. Donor Doping of Single-Walled Carbon Nanotubes by Filling of Channels with Silver. J. Exp. Theor. Phys. 2012, 115, 485–491. DOI: 10.1134/S1063776112080092.
  • Kharlamova, M. V.; Niu, J. J. New Method of the Directional Modification of the Electronic Structure of Single-Walled Carbon Nanotubes by Filling Channels with Metallic Copper from a Liquid Phase. JETP Lett. 2012, 95, 314–319. DOI: 10.1134/S0021364012060057.
  • Sloan, J.; Kirkland, A. I.; Hutchison, J. L.; Green, M. L. H. Aspects of Crystal Growth within Carbon Nanotubes. C. R. Phys. 2003, 4, 1063–1074. DOI: 10.1016/S1631-0705(03)00102-6.
  • Sloan, J.; Friedrichs, S.; Meyer, R. R.; Kirkland, A. I.; Hutchison, J. L.; Green, M. L. H. Structural Changes Induced in Nanocrystals of Binary Compounds Confined within Single Walled Carbon Nanotubes: A Brief Review. Inorg. Chim. Acta 2002, 330, 1–12. DOI: 10.1016/S0020-1693(01)00774-5.
  • Meyer, R. R.; Sloan, J.; Dunin-Borkowski, R. E.; Kirkland, A. I.; Novotny, M. C.; Bailey, S. R.; Hutchison, J. L.; Green, M. L. H. Discrete Atom Imaging of One-Dimensional Crystals Formed within Single-Walled Carbon Nanotubes. Science 2000, 289, 1324–1326. DOI: 10.1126/science.289.5483.1324.
  • Kirkland, A. I.; Meyer, M. R.; Sloan, J.; Hutchison, J. L. Structure Determination of Atomically Controlled Crystal Architectures Grown within Single Wall Carbon Nanotubes. Microsc. Microanal. 2005, 11, 401–409. DOI: 10.1017/S14319276050385.
  • Kharlamova, M. V.; Yashina, L. V.; Lukashin, A. V. Charge Transfer in Single-Walled Carbon Nanotubes Filled with Cadmium Halogenides. J. Mater. Sci. 2013, 48, 8412–8419. DOI: 10.1007/s10853-013-7653-6.
  • Kharlamova, M. V.; Yashina, L. V.; Eliseev, A. A.; Volykhov, A. A.; Neudachina, V. S.; Brzhezinskaya, M. M.; Zyubina, T. S.; Lukashin, A. V.; Tretyakov, Y. D. Single-Walled Carbon Nanotubes Filled with Nickel Halogenides: Atomic Structure and Doping Effect. Phys. Status Solidi B 2012, 249, 2328–2332. DOI: 10.1002/pssb.201200060.
  • Kharlamova, M. V. Comparison of Influence of Incorporated 3d-, 4d- and 4f-Metal Chlorides on Electronic Properties of Single-Walled Carbon Nanotubes. Appl. Phys. A 2013, 111, 725–731. DOI: 10.1007/s00339-013-7639-x.
  • Kharlamova, M. V.; Yashina, L. V.; Lukashin, A. V. Comparison of Modification of Electronic Properties of Single-Walled Carbon Nanotubes Filled with Metal Halogenide, Chalcogenide, and Pure Metal. Appl. Phys. A 2013, 112, 297–304. DOI: 10.1007/s00339-013-7808-y.
  • Kharlamova, M. V.; Yashina, L. V.; Volykhov, A. A.; Niu, J. J.; Neudachina, V. S.; Brzhezinskaya, M. M.; Zyubina, T. S.; Belogorokhov, A. I.; Eliseev, A. A. Acceptor Doping of Single-Walled Carbon Nanotubes by Encapsulation of Zinc Halogenides. Eur. Phys. J. B 2012, 85, 34. DOI: 10.1140/epjb/e2011-20457-6.
  • Smith, B. W.; Monthioux, M.; Luzzi, D. E. Encapsulated C60 in Carbon Nanotubes. Nature 1998, 396, 323–324. DOI: 10.1038/24521.
  • Burteaux, B.; Claye, A.; Smith, B. W.; Monthioux, M.; Luzzi, D. E.; Fischer, J. E. Abundance of Encapsulated C60 in Single-Wall Carbon Nanotubes. Chem. Phys. Lett. 1999, 310, 21–24. DOI: 10.1016/S0009-2614(99)00720-4.
  • Chamberlain, T. W.; Camenisch, A.; Champness, N. R.; Briggs, G. A. D.; Benjamin, S. C.; Ardavan, A.; Khlobystov, A. N. Toward Controlled Spacing in One-Dimensional Molecular Chains: Alkyl-Chain-Functionalized Fullerenes in Carbon Nanotubes. J. Am. Chem. Soc. 2007, 129, 8609–8614. DOI: 10.1021/ja071803q.
  • Gimenez-Lopez, M. D.; Chuvilin, A.; Kaiser, U.; Khlobystov, A. N. Functionalised Endohedral Fullerenes in Single-Walled Carbon Nanotubes. Chem. Commun. 2011, 47, 2116–2118. DOI: 10.1039/C0CC02929G.
  • Kataura, H.; Maniwa, Y.; Kodama, T.; Kikuchi, K.; Hirahara, K.; Suenaga, K.; Iijima, S.; Suzuki, S.; Achiba, Y.; Kratschmer, W. High-Yield Fullerene Encapsulation in Single-Wall Carbon Nanotubes. Synthet. Met 2001, 121, 1195–1196. DOI: 10.1016/S0379-6779(00)00707-4.
  • Suenaga, K.; Okazaki, T.; Wang, C. R.; Bandow, S.; Shinohara, H.; Iijima, S. Direct Imaging of Sc2@C84 Molecules Encapsulated inside Single-Wall Carbon Nanotubes by High Resolution Electron Microscopy with Atomic Sensitivity. Phys. Rev. Lett. 2003, 90, 055506. DOI: 10.1103/PhysRevLett.90.055506.
  • Guan, L. H.; Shi, Z. J.; Li, M. X.; Gu, Z. N. Ferrocene-Filled Single-Walled Carbon Nanotubes. Carbon 2005, 43, 2780–2785. DOI: 10.1016/j.carbon.2005.05.025.
  • Li, L. J.; Khlobystov, A. N.; Wiltshire, J. G.; Briggs, G. A. D.; Nicholas, R. J. Diameter-Selective Encapsulation of Metallocenes in Single-Walled Carbon Nanotubes. Nature Mater. 2005, 4, 481–485. DOI: 10.1038/nmat139.
  • Kharlamova, M. V.; Sauer, M.; Saito, T.; Sato, Y.; Suenaga, K.; Pichler, T.; Shiozawa, H. Doping of Single-Walled Carbon Nanotubes Controlled via Chemical Transformation of Encapsulated Nickelocene. Nanoscale 2015, 7, 1383–1391. DOI: 10.1039/C4NR05586A.
  • Kharlamova, M. V.; Sauer, M.; Egorov, A.; Kramberger, C.; Saito, T.; Pichler, T.; Shiozawa, H. Temperature-Dependent Inner Tube Growth and Electronic Structure of Nickelocene-Filled Single-Walled Carbon Nanotubes. Phys. Status Solidi B 2015, 252, 2485–2490. DOI: 10.1002/pssb.201552206.
  • Kharlamova, M. V.; Kramberger, C.; Saito, T.; Sato, Y.; Suenaga, K.; Pichler, T.; Shiozawa, H. Chirality-Dependent Growth of Single-Wall Carbon Nanotubes as Revealed inside Nano-Test Tubes. Nanoscale 2017, 9, 7998–8006. DOI: 10.1039/C7NR01846K.
  • Kharlamova, M. V.; Kramberger, C.; Sauer, M.; Yanagi, K.; Saito, T.; Pichler, T. Inner Tube Growth and Electronic Properties of Metallicity-Sorted Nickelocene-Filled Semiconducting Single-Walled Carbon Nanotubes. Appl. Phys. A 2018, 124, 247. DOI: 10.1007/s00339-018-1679-1.
  • Kharlamova, M. V.; Kramberger, C.; Saito, T.; Shiozawa, H.; Pichler, T. Growth Dynamics of Inner Tubes inside Cobaltocene-Filled Single-Walled Carbon Nanotubes. Appl. Phys. A 2016, 122, 749. DOI: 10.1007/s00339-016-0282-6.
  • Kharlamova, M. V.; Kramberger, C.; Sato, Y.; Saito, T.; Suenaga, K.; Pichler, T.; Shiozawa, H. Chiral Vector and Metal Catalyst-Dependent Growth Kinetics of Single-Wall Carbon Nanotubes. Carbon 2018, 133, 283–292. DOI: 10.1016/j.carbon.2018.03.046.
  • Shiozawa, H.; Pichler, T.; Gruneis, A.; Pfeiffer, R.; Kuzmany, H.; Liu, Z.; Suenaga, K.; Kataura, H. A Catalytic Reaction inside a Single-Walled Carbon Nanotube. Adv. Mater. 2008, 20, 1443–1449. DOI: 10.1002/adma.200701466.
  • Shiozawa, H.; Pichler, T.; Kramberger, C.; Gruneis, A.; Knupfer, M.; Buchner, B.; Zolyomi, V.; Koltai, J.; Kurti, J.; Batchelor, D.; Kataura, H. Fine Tuning the Charge Transfer in Carbon Nanotubes via the Interconversion of Encapsulated Molecules. Phys. Rev. B 2008, 77, 153402. DOI: 10.1103/PhysRevB.77.153402.
  • Sauer, M.; Shiozawa, H.; Ayala, P.; Ruiz-Soria, G.; Liu, X. J.; Chernov, A.; Krause, S.; Yanagi, K.; Kataura, H.; Pichler, T. Internal Charge Transfer in Metallicity Sorted Ferrocene Filled Carbon Nanotube Hybrids. Carbon 2013, 59, 237–245. DOI: 10.1016/j.carbon.2013.03.014.
  • Shiozawa, H.; Kramberger, C.; Rummeli, M.; Batchelor, D.; Kataura, H.; Pichler, T.; Silva, S. R. P. Electronic Properties of Single-Walled Carbon Nanotubes Encapsulating a Cerium Organometallic Compound. Phys. Status Solidi B 2009, 246, 2626–2630. DOI: 10.1002/pssb.200982344.
  • Shiozawa, H.; Pichler, T.; Kramberger, C.; Rummeli, M.; Batchelor, D.; Liu, Z.; Suenaga, K.; Kataura, H.; Silva, S. R. P. Screening the Missing Electron: Nanochemistry in Action. Phys. Rev. Lett. 2009, 102, 046804. DOI: 10.1103/PhysRevLett.102.046804.
  • Saito, T.; Ohshima, S.; Okazaki, T.; Ohmori, S.; Yumura, M.; Iijima, S. Selective Diameter Control of Single-Walled Carbon Nanotubes in the Gas-Phase Synthesis. J. Nanosci. Nanotech. 2008, 8, 6153–6157. DOI: 10.1166/jnn.2008.SW23.
  • Araujo, P. T.; Maciel, I. O.; Pesce, P. B. C.; Pimenta, M. A.; Doorn, S. K.; Qian, H.; Hartschuh, A.; Steiner, M.; Grigorian, L.; Hata, K.; Jorio, A. Nature of the Constant Factor in the Relation between Radial Breathing Mode Frequency and Tube Diameter for Single-Wall Carbon Nanotubes. Phys. Rev. B 2008, 77, 241403. DOI: 10.1103/PhysRevB.77.241403.
  • Kataura, H.; Kumazawa, Y.; Maniwa, Y.; Umezu, I.; Suzuki, S.; Ohtsuka, Y.; Achiba, Y. Optical Properties of Single-Wall Carbon Nanotubes. Synth. Met. 1999, 103, 2555–2558. DOI: 10.1016/S0379-6779(98)00278-1.
  • Dresselhaus, M. S.; Dresselhaus, G.; Jorio, A.; Souza, A. G.; Saito, R. Raman Spectroscopy on Isolated Single Wall Carbon Nanotubes. Carbon 2002, 40, 2043–2061. DOI: 10.1016/S0008-6223(02)00066-0.
  • Brown, S. D. M.; Corio, P.; Marucci, A.; Dresselhaus, M. S.; Pimenta, M. A.; Kneipp, K. Anti-Stokes Raman Spectra of Single-Walled Carbon Nanotubes. Phys. Rev. B 2000, 61, R5137–R5140. DOI: 10.1103/PhysRevB.61.R5137.
  • Jorio, A.; Souza, A. G.; Dresselhaus, G.; Dresselhaus, M. S.; Swan, A. K.; Unlu, M. S.; Goldberg, B. B.; Pimenta, M. A.; Hafner, J. H.; Lieber, C. M.; Saito, R. G-Band Resonant Raman Study of 62 Isolated Single-Wall Carbon Nanotubes. Phys. Rev. B 2002, 65, 155412. DOI: 10.1103/PhysRevB.65.155412.
  • Dubay, O.; Kresse, G. Density Functional Calculations for C60 Peapods. Phys. Rev. B 2004, 70, 165424. DOI: 10.1103/PhysRevB.70.165424.
  • Jourdain, V.; Bichara, C. Current Understanding of the Growth of Carbon Nanotubes in Catalytic Chemical Vapour Deposition. Carbon 2013, 58, 2–39. DOI: 10.1016/j.carbon.2013.02.046.
  • Somorjai, G. A. Introduction to Surface Chemistry and Catalysis; Wiley: New York, 1994.
  • Baker, R. T. K. Catalytic Growth of Carbon Filaments. Carbon 1989, 27, 315–323. DOI: 10.1016/0008-6223(89)90062-6.
  • Bower, C.; Zhou, O.; Zhu, W.; Werder, D. J.; Jin, S. H. Nucleation and Growth of Carbon Nanotubes by Microwave Plasma Chemical Vapor Deposition. Appl. Phys. Lett. 2000, 77, 2767–2769. DOI: 10.1063/1.1319529.
  • Choi, Y. C.; Shin, Y. M.; Lee, Y. H.; Lee, B. S.; Park, G. S.; Choi, W. B.; Lee, N. S.; Kim, J. M. Controlling the Diameter, Growth Rate, and Density of Vertically Aligned Carbon Nanotubes Synthesized by Microwave Plasma-Enhanced Chemical Vapor Deposition. Appl. Phys. Lett. 2000, 76, 2367–2369. DOI: 10.1063/1.126348.
  • Chiang, W. H.; Sankaran, R. M. Relating Carbon Nanotube Growth Parameters to the Size and Composition of Nanocatalysts. Diam. Relat. Mater 2009, 18, 946–952. DOI: 10.1016/j.diamond.2009.01.010.
  • Patole, S. P.; Kim, H.; Choi, J.; Kim, Y.; Baik, S.; Yoo, J. B. Kinetics of Catalyst Size Dependent Carbon Nanotube Growth by Growth Interruption Studies. Appl. Phys. Lett. 2010, 96, 094101. DOI: 10.1063/1.3330848.
  • Cervantes-Sodi, F.; McNicholas, T. P.; Simmons, J. G.; Liu, J.; Csanyi, G.; Ferrari, A. C.; Curtarolo, S. Viscous State Effect on the Activity of Fe Nanocatalysts. ACS Nano 2010, 4, 6950–6956. DOI: 10.1021/nn101883s.
  • Kim, N. S.; Lee, Y. T.; Park, J. H.; Ryu, H.; Lee, H. J.; Choi, S. Y.; Choo, J. B. Dependence of the Vertically Aligned Growth of Carbon Nanotubes on the Catalysts. J. Phys. Chem. B 2002, 106, 9286–9290. DOI: 10.1021/jp021018u.
  • Shiozawa, H.; Kramberger, C.; Pfeiffer, R.; Kuzmany, H.; Pichler, T.; Liu, Z.; Suenaga, K.; Kataura, H.; Silva, S. R. P. Catalyst and Chirality Dependent Growth of Carbon Nanotubes Determined through Nano-Test Tube Chemistry. Adv. Mater. 2010, 22, 3685–3689. DOI: 10.1002/adma.201001211.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.