121
Views
6
CrossRef citations to date
0
Altmetric
Proceedings of the 14th International Conference “Advanced Carbon Nanostructures” (ACNS’2019)

Mechanisms of supramolecular ordering of water-soluble derivatives of fullerenes in aqueous media

ORCID Icon, ORCID Icon, , ORCID Icon, , ORCID Icon & show all
Pages 30-39 | Received 18 Jun 2019, Accepted 19 Sep 2019, Published online: 29 Sep 2019

References

  • Bogdanović, G.; Djordjević, A. Carbon Nanomaterials: Biologically Active Fullerene Derivatives. Srp. Arh. Celok. Lek. 2016, 144, 222–231. DOI: 10.2298/SARH1604222B.
  • Hsieh, F. Y.; Zhilenkov, A. V.; Voronov, I. I.; Khakina, E. A.; Mischenko, D. V.; Troshin, P. A.; Hsu, S. H. Water-Soluble Fullerene Derivatives as Brain Medicine: Surface Chemistry Determines If They Are Neuroprotective and Antitumor. ACS Appl. Mater. Interfaces 2017, 9, 11482–11492. DOI: 10.1021/acsami.7b01077.
  • Atsushi, I.; Tatsuya, I.; Naotake, M.; Kazuyuki, N.; Kouta, S.; Kazuya, K.; Toshio, S.; Takeshi, N.; Motofusa, A. Water-Solubilization of Fullerene Derivatives by β-(1,3-1,6)-DGlucan and Their Photodynamic Activities towards Macrophages. Chem. Asian J. 2017, 12, 1069–1074. DOI: 10.1002/asia.201700182.
  • Atsushi, I.; Tomoya, M.; Masafumi, U.; Kouta, S.; Hajime, S.; Hisakage, F.; Akio, K.; Motofusa, A. Improved Photodynamic Activities of Liposome-Incorporated [60]Fullerene Derivatives Bearing a Polar Group. Chem. Commun. 2017, 53, 2966–2969. DOI: 10.1039/C7CC00302A.
  • Chaudhuri, P.; Paraskar, A.; Soni, S.; Mashelkar, R. A.; Sengupta, S. Fullerenol − Cytotoxic Conjugates for Cancer Chemotherapy. ACS Nano 2009, 3, 2505–2514. DOI: 10.1021/nn900318y.
  • Bogdanović, G.; Kojić, V.; Đorđević, A.; Čanadanović-Brunet, J.; Vojinović-Miloradov, M.; Baltić, V. V. Modulating Activity of FullerolC60(OH)22 on Doxorubicin-Induced Cytotoxicity. Toxicol. In Vitro 2004, 18, 629–637. DOI: 10.1016/j.tiv.2004.02.010.
  • Trajković, S.; Dobrić, S.; Jaćević, V.; Dragojević-Simić, V.; Milovanović, Z.; Đorđević, A. Tissue-Protective Effects of Fullerenol C60(OH)24 and Amifostine in Irradiated Rats. Colloids Surf. B Biointerfaces 2007, 58, 39–43. DOI: 10.1016/j.colsurfb.2007.01.005.
  • Cavas, T.; Cinkılıc, N.; Vatan, O.; Yılmaz, D. Effects of Fullerenol Nanoparticles on Acetamiprid Induced Cytoxicity and Genotoxicity in Cultured Human Lung Fibroblasts. Pestic. Biochem. Physiol. 2014, 114, 1–7. DOI: 10.1016/j.pestbp.2014.07.008.
  • Grebowski, J.; Krokosz, A.; Konarska, A.; Wolszczak, M.; Puchala, M. Rate Constants of Highly Hydroxylated Fullerene C60 Interacting with Hydroxyl Radicals and Hydrated Electrons. Pulse Radiolysis Study. Radiat. Phys. Chem. 2014, 103, 146–152. DOI: 10.1016/j.radphyschem.2014.05.057.
  • Moor, K. J.; Snow, S. D.; Kim, J.-H. Differential Photoactivity of Aqueous [C60] and [C70] Fullerene Aggregates. Environ. Sci. Technol. 2015, 49, 5990–5998. DOI: 10.1021/acs.est.5b00100.
  • Zouboulaki, R.; Psillakis, E. Fast Determination of Aqueous Fullerene C60 Aggregates by Vortex-Assisted Liquid-Liquid Microextraction and Liquid Chromatography-Mass Spectrometry. Anal. Methods 2016, 8, 4821–4827. DOI: 10.1039/C6AY00885B.
  • Aich, N.; Boateng, L. K.; Sabaraya, I. V.; Das, D.; Flora, J. R. V.; Saleh, N. B. Aggregation Kinetics of Higher-Order Fullerene Clusters in Aquatic Systems. Environ. Sci. Technol. 2016, 50, 3562–3571. DOI: 10.1021/acs.est.5b05447.
  • Nath, S.; Pal, H.; Sapre, A. V. Effect Polarity of Solvents on Aggregation of C60. Chem. Phys. Lett. 2000, 327, 143–148. DOI: 10.1016/S0009-2614(00)00863-0.
  • Rudalevige, T.; Francis, A. H.; Zand, R. Spectroscopic Studies of Fullerene Aggregates. J. Phys. Chem. A 1998, 102, 9797–9802. DOI: 10.1021/jp9832591.
  • Golubkov, V. V.; Shakhmatkin, B. A.; Charykov, N. A.; Akselrod, B. M. X-Ray Small-Angle Scattering of Fullerene C70 Solutions in o-Xylene. Russ. J. Phys. Chem. 2001, 75, 1667–1670.
  • Smorenburg, H. E.; Crevecoeur, R. M.; Schepper, I. M.; de Graaf, L. A. Structure and Dynamics of C60 in Liquid CS2 from Neutron Scattering. Phys. Rev. E 1995, 52, 2742–2752. DOI: 10.1103/PhysRevE.52.2742.
  • Nakamura, E.; Isobe, H. Functionalized Fullerenes in Water. The First 10 Years of Their Chemistry, Biology, and Nanoscience. Acc. Chem. Res. 2003, 36, 807–815. DOI: 10.1021/ar030027y.
  • Xing, G.; Zhang, J.; Zhao, Y.; Tang, J.; Zhang, B.; Gao, X.; Yuan, H.; Qu, L.; Cao, W.; Chai, Z.; et al. Influences of Structural Properties on Stability of Fullerenols. J. Phys. Chem. B 2004, 108, 11473–11479. DOI: 10.1021/jp0487962.
  • GrushkoYu, S.; Sedov, V. P.; Kolesnik, S. G. The Method of Producing Fullerene C60. Russian Federation Patent 2456233, С2, July 20, 2012.
  • Sedov, V. P.; Kolesnik, S. G. The Method of Producing Fullerene C70. Russian Federation Patent 2455230, C2. July 10, 2012.
  • Sedov, V. P.; Szhogina, A. A. The Method of Obtaining Highly Water-Soluble Fullerenols. Russian Federation Patent 2558121, С1, July 27, 2015.
  • Goswami, T. H.; Singh, R.; Alam, S.; Mathur, G. N. Thermal Analysis: A Unique Method to Estimate the Number of Substituents in Fullerene Derivatives. Thermochim. Acta 2004, 419, 97–104. DOI: 10.1016/j.tca.2004.02.001.
  • Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; et al. Gaussian 16, Revision C.01; Gaussian, Inc.: Wallingford, CT, 2016.
  • Herraez, A.; Willighagen, E.; Hanson, R.; et al. Jmol: an open-source browser-based HTML5 viewer and stand-alone Java viewer for chemical structures in 3D. http://jmol.sourceforge.net (accessed September 24, 2019).
  • Ditchfield, R.; Hehre, W. J.; Pople, J. A. Self-Consistent Molecular Orbital Methods. 9. Extended Gaussian-Type Basis for Molecular-Orbital Studies of Organic Molecules. J. Chem. Phys. 1971, 54, 724–728. DOI: 10.1063/1.1674902.
  • Becke, A. D. A New Mixing of Hartree-Fock and Local Density-Functional Theories. J. Chem. Phys. 1993, 98, 1372–1377. DOI: 10.1063/1.464304.
  • Lee, C.; Yang, W.; Parr, R. G. Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density. Phys. Rev. B 1988, 37, 785–789. DOI: 10.1103/PhysRevB.37.785.
  • Svergun, D. I. Determination of the Regularization Parameter in Indirect-Transform Methods Using Perceptual Criteria. J. Appl. Crystallogr. 1992, 25, 495–503. DOI: 10.1107/S0021889892001663.
  • Lebedev, V.; Kulvelis, Y.; Kuklin, A.; Vul, A. Neutron Study of Multilevel Structures of Diamond Gels. Condens. Matter 2016, 1, 10. DOI: 10.3390/condmat1010010.
  • Blanton, T. N.; Barnes, C. L.; Lelental, M. Preparation of Silver Behenate Coatings to Provide Low- to Mid-Angle Diffraction Calibration. J. Appl. Crystallogr. 2000, 33, 172–173. DOI: 10.1107/S0021889899012388.
  • Franke, D.; Kikhney, A. G.; Svergun, D. I. Automated Acquisition and Analysis of Small Angle X-ray Scattering Data. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom., Detect. Assoc. Equip. 2012, 689, 52–59. DOI: 10.1016/j.nima.2012.06.008.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.