620
Views
14
CrossRef citations to date
0
Altmetric
Original Articles

Rambutan peel based hard carbons as anode materials for sodium ion battery

, , &
Pages 953-960 | Received 23 Jul 2019, Accepted 19 Sep 2019, Published online: 01 Oct 2019

References

  • Mahmoudzadeh Andwari, A.; Pesiridis, A.; Rajoo, S.; Martinez-Botas, R.; Esfahanian, V. A Review of Battery Electric Vehicle Technology and Readiness Levels. Renew. Sustain. Energy Rev. 2017, 78, 414–430. DOI: 10.1016/j.rser.2017.03.138.
  • Ferrara, S.; Liu, B.; Xiao, J.; Deng, Z. D.; Cartmell, S.; Li, Q.; Wang, Y. Lithium and Lithium Ion Batteries for Applications in Microelectronic Devices: A Review. J. Power Sources 2015, 286, 330–345. DOI: 10.1016/j.jpowsour.2015.03.164.
  • Deng, D. Li-Ion Batteries: Basics, Progress, and Challenges. Energy Sci. Eng. 2015, 3, 385–418. DOI: 10.1002/ese3.95.
  • Winter, M.; Barnett, B.; Xu, K. Before Li Ion Batteries. Chem. Rev. 2018, 118, 11433–11456. DOI: 10.1021/acs.chemrev.8b00422.
  • Ding, Y.; Cano, Z. P.; Yu, A.; Lu, J.; Chen, Z. Automotive Li-Ion Batteries: Current Status and Future Perspectives. Electrochem. Energ. Rev. 2019, 2, 1–28. DOI: 10.1007/s41918-018-0022-z.
  • Wang, M.; Tang, Y. A Review on the Features and Progress of Dual-Ion Batteries. Adv. Energy Mater. 2018, 8, 1870020–1870088. DOI: 10.1002/aenm.201703320.
  • Sawicki, M.; Shaw, L. L. Advances and Challenges of Sodium Ion Batteries as Post Lithium Ion Batteries. RSC Adv. 2015, 5, 53129–53154. DOI: 10.1039/C5RA08321D.
  • Nayak, P. K.; Yang, L.; Brehm, W.; Adelhelm, P. From Lithium-Ion to Sodium-Ion Batteries: Advantages, Challenges, and Surprises. Angew. Chem. Int. Ed. 2018, 57, 102–120. DOI: 10.1002/anie.201703772.
  • Zhang, H.; Hasa, I.; Passerini, S. Beyond Insertion for Na-Ion Batteries: Nanostructured Alloying and Conversion Anode Materials. Adv. Energy Mater. 2018, 8, 1870082. DOI: 10.1002/aenm.201702582.
  • Xu, G. L.; Amine, R.; Abouimrane, A.; Che, H.; Dahbi, M.; Ma, Z. F.; Saadoune, I.; Alami, J.; Mattis, W. L.; Pan, F. Challenges in Developing Electrodes, Electrolytes, and Diagnostics Tools to Understand and Advance Sodium-Ion Batteries. Adv. Energy Mater. 2018, 8, 1702403–1702463. DOI: 10.1002/aenm.201702403.
  • Li, F.; Wei, Z.; Manthiram, A.; Feng, Y.; Ma, J.; Mai, L. Sodium-Based Batteries: From Critical Materials to Battery Systems. J. Mater. Chem. A 2019, 7, 9406–9431. DOI: 10.1039/C8TA11999F.
  • Liu, Y.; Sun, Z.; Tan, K.; Denis, D. K.; Sun, J.; Liang, L.; Hou, L.; Yuan, C. Recent Progress in Flexible Non-Lithium Based Rechargeable Batteries. J. Mater. Chem. A 2019, 7, 4353–4382. DOI: 10.1039/C8TA10258A.
  • Hou, H.; Qiu, X.; Wei, W.; Zhang, Y.; Ji, X. Carbon Anode Materials for Advanced Sodium-Ion Batteries. Adv. Energy Mater. 2017, 7, 1602830–1602898. DOI: 10.1002/aenm.201602898.
  • Lao, M.; Zhang, Y.; Luo, W.; Yan, Q.; Sun, W.; Dou, S. X. Alloy-Based Anode Materials toward Advanced Sodium-Ion Batteries. Adv. Mater. 2017, 29, 1700622–1700623. DOI: 10.1002/adma.201700622.
  • Tan, H.; Chen, D.; Rui, X.; Yu, Y. Peering into Alloy Anodes for Sodium-Ion Batteries: Current Trends, Challenges, and Opportunities. Adv. Funct. Mater. 2019, 29, 1808732–1808745. DOI: 10.1002/adfm.201808745.
  • Edison, E.; Sreejith, S.; Lim, C. T.; Madhavi, S. Beyond Intercalation Based Sodium-Ion Batteries: The Role of Alloying Anodes, Efficient Sodiation Mechanisms and Recent Progress. Sustain. Energy Fuels 2018, 2, 2567–2582. DOI: 10.1039/C8SE00381E.
  • Qi, S.; Wu, D.; Dong, Y.; Liao, J.; Foster, C. W.; O'Dwyer, C.; Feng, Y.; Liu, C.; Ma, J. Cobalt-Based Electrode Materials for Sodium-Ion Batteries. Chem. Eng. J. 2019, 370, 185–207. DOI: 10.1016/j.cej.2019.03.166.
  • Zhou, H.; Li, X.; Li, Y.; Zheng, M.; Pang, H. Applications of M x Se y (M = Fe, Co, Ni) and Their Composites in Electrochemical Energy Storage and Conversion; Springer: Singapore, 2019.; Vol. 11. DOI: 10.1007/s40820-019-0272-2.
  • Tang, H.; Zheng, M.; Hu, Q.; Chi, Y.; Xu, B.; Zhang, S.; Xue, H.; Pang, H. Derivatives of Coordination Compounds for Rechargeable Batteries. J. Mater. Chem. A 2018, 6, 13999–14024. DOI: 10.1039/C8TA03644F.
  • Wang, H. g.; Zhang, X. b. Organic Carbonyl Compounds for Sodium-Ion Batteries: Recent Progress and Future Perspectives. Chem. Eur. J. 2018, 24, 18235–18245. DOI: 10.1002/chem.201802517.
  • Xu, Q. T.; Li, J. C.; Xue, H. G.; Guo, S. P. Binary Iron Sulfides as Anode Materials for Rechargeable Batteries: Crystal Structures, Syntheses, and Electrochemical Performance. J. Power Sources 2018, 379, 41–52. DOI: 10.1016/j.jpowsour.2018.01.022.
  • Li, Q.; Guo, X.; Zheng, M.; Pang, H. Some MoS 2 -Based Materials for Sodium-Ion Battery. Funct. Mater. Lett. 2018, 11, 1840004. DOI: 10.1142/S1793604718400040.
  • Xiao, Y.; Lee, S. H.; Sun, Y. K. The Application of Metal Sulfides in Sodium Ion Batteries. Adv. Energy Mater. 2017, 7, 1601329. DOI: 10.1002/aenm.201601329.
  • Liu, W.; Zhi, H.; Yu, X. Recent Progress in Phosphorus Based Anode Materials for Lithium/Sodium Ion Batteries. Energy Storage Mater 2019, 16, 290–322. DOI: 10.1016/j.ensm.2018.05.020.
  • Li, Z.; Zhao, H. Recent Developments of Phosphorus-Based Anodes for Sodium Ion Batteries. J. Mater. Chem. A 2018, 6, 24013–24030. DOI: 10.1039/C8TA08774A.
  • Li, T.; Gulzar, U.; Proietti Zaccaria, R.; Capiglia, C.; Hackney, S. A.; Aifantis, K. E. Damage Formation in Sn Film Anodes of Na-Ion Batteries. J. Phys. Chem. C 2019, 123, 15244–15250. DOI: 10.1021/acs.jpcc.9b02004.
  • Dou, X.; Hasa, I.; Saurel, D.; Vaalma, C.; Wu, L.; Buchholz, D.; Bresser, D.; Komaba, S.; Passerini, S. Hard Carbons for Sodium-Ion Batteries: Structure, Analysis, Sustainability, and Electrochemistry. Mater. Today 2019, 23, 87–104. DOI: 10.1016/j.mattod.2018.12.040.
  • Arie, A. A.; Tekin, B.; Demir, E.; Demir-Cakan, R. Utilization of the Indonesian’s Spent Tea Leaves as Promising Porous Hard Carbon Precursors for Anode Materials in Sodium Ion Batteries. Waste Biomass Valorization 2019, 1–11. DOI: 10.1007/s12649-019-00624-x.
  • Demir, E.; Aydin, M.; Arie, A. A.; Demir-Cakan, R. Apricot Shell Derived Hard Carbons and Their Tin Oxide Composites as Anode Materials for Sodium-Ion Batteries. J. Alloys Compd. 2019, 788, 1093–1102. DOI: 10.1016/j.jallcom.2019.02.264.
  • Rath, P. C.; Patra, J.; Huang, H. T.; Bresser, D.; Wu, T. Y.; Chang, J. K. Carbonaceous Anodes Derived from Sugarcane Bagasse for Sodium-Ion Batteries. ChemSusChem 2019, 12, 2302–2309. DOI: 10.1002/cssc.201900319.
  • Hou, H.; Yu, C.; Liu, X.; Yao, Y.; Dai, Z.; Li, D. The Effect of Carbonization Temperature of Waste Cigarette Butts on Na-Storage Capacity of N-Doped Hard Carbon Anode. Chem. Pap. 2019, 73, 1237–1246. DOI: 10.1007/s11696-018-00674-w.
  • Ren, X.; Xu, S. D.; Liu, S.; Chen, L.; Zhang, D.; Qiu, L. Lath-Shaped Biomass Derived Hard Carbon as Anode Materials with Super Rate Capability for Sodium-Ion Batteries. J. Electroanal. Chem. 2019, 841, 63–72. DOI: 10.1016/j.jelechem.2019.04.033.
  • Li, C.; Li, J.; Zhang, Y.; Cui, X.; Lei, H.; Li, G. Heteroatom-Doped Hierarchically Porous Carbons Derived from Cucumber Stem as High-Performance Anodes for Sodium-Ion Batteries. J. Mater. Sci. 2019, 54, 5641–5657. DOI: 10.1007/s10853-018-03229-2.
  • Wu, F.; Zhang, M.; Bai, Y.; Wang, X.; Dong, R.; Wu, C. Lotus Seedpod-Derived Hard Carbon with Hierarchical Porous Structure as Stable Anode for Sodium-Ion Batteries. ACS Appl. Mater. Interfaces 2019, 11, 12554–12561. DOI: 10.1021/acsami.9b01419.
  • Rybarczyk, M. K.; Li, Y.; Qiao, M.; Hu, Y. S.; Titirici, M. M.; Lieder, M. Hard Carbon Derived from Rice Husk as Low Cost Negative Electrodes in Na-Ion Batteries. J. Energy Chem. 2019, 17, 17–22. DOI: 10.1016/j.jechem.2018.01.025.
  • Ou, J.; Yang, L.; Zhang, Z. Chrysanthemum Derived Hierarchically Porous Nitrogen-Doped Carbon as High Performance Anode Material for Lithium/Sodium Ion Batteries. Powder Technol. 2019, 344, 89–95. DOI: 10.1016/j.powtec.2018.11.100.
  • Arie, A. A.; Tekin, B.; Demir, E.; Demir-Cakan, R. Hard Carbons Derived from Waste Tea Bag Powder as Anodes for Sodium Ion Battery. Mater. Technol. 2019, 00, 1–10. DOI: 10.1080/10667857.2019.1586087.
  • Wang, P.; Fan, L.; Yan, L.; Shi, Z. Low-Cost Water Caltrop Shell-Derived Hard Carbons with High Initial Coulombic Efficiency for Sodium-Ion Battery Anodes. J. Alloys Compd. 2019, 775, 1028–1035. DOI: 10.1016/j.jallcom.2018.10.180.
  • Shen, Y.; Sun, S.; Yang, M.; Zhao, X. Typha-Derived Hard Carbon for High-Performance Sodium Ion Storage. J. Alloys Compd. 2019, 784, 1290–1296. DOI: 10.1016/j.jallcom.2019.01.021.
  • Arie, A. A.; Kristianto, H.; Demir, E.; Cakan, R. D. Activated Porous Carbons Derived from the Indonesian Snake Fruit Peel as Anode Materials for Sodium Ion Batteries. Mater. Chem. Phys. 2018, 217, 254–261. DOI: 10.1016/j.matchemphys.2018.06.076.
  • Izanzar, I.; Dahbi, M.; Kiso, M.; Doubaji, S.; Komaba, S.; Saadoune, I. Hard Carbons Issued from Date Palm as Efficient Anode Materials for Sodium-Ion Batteries. Carbon N. Y. 2018, 137, 165–173. DOI: 10.1016/j.carbon.2018.05.032.
  • Wang, J.; Yan, L.; Ren, Q.; Fan, L.; Zhang, F.; Shi, Z. Facile Hydrothermal Treatment Route of Reed Straw-Derived Hard Carbon for High Performance Sodium Ion Battery. Electrochim. Acta 2018, 291, 188–196. DOI: 10.1016/j.electacta.2018.08.136.
  • Talekar, S.; Patti, A. F.; Vijayraghavan, R.; Arora, A. Complete Utilization of Waste Pomegranate Peels to Produce a Hydrocolloid, Punicalagin Rich Phenolics, and a Hard Carbon Electrode. ACS Sustainable Chem. Eng. 2018, 6, 16363–16374. DOI: 10.1021/acssuschemeng.8b03452.
  • Hernández-Hernández, C.; Aguilar, C. N.; Rodríguez-Herrera, R.; Flores-Gallegos, A. C.; Morlett-Chávez, J.; Govea-Salas, M.; Ascacio-Valdés, J. A. Rambutan (Nephelium Lappaceum L.): Nutritional and Functional Properties. Trends Food Sci. Technol. 2019, 85, 201–210. DOI: 10.1016/j.tifs.2019.01.018.
  • Selvanathan, M.; Yann, K. T.; Chung, C. H.; Selvarajoo, A.; Arumugasamy, S. K.; Sethu, V. Adsorption of Copper(II) Ion from Aqueous Solution Using Biochar Derived from Rambutan (Nepheliumlappaceum) Peel: Feedforward Neural Network Modelling Study. Water. Air. Soil Pollut. 2017, 228, DOI: 10.1007/s11270-017-3472-8.
  • Zhao, Q.; Tao, S.; Miao, X.; Zhu, Y. A Green, Rapid, Scalable and Versatile Hydrothermal Strategy to Fabricate Monodisperse Carbon Spheres with Tunable Micrometer Size and Hierarchical Porosity. Chem. Eng. J. 2019, 372, 1164–1173. DOI: 10.1016/j.cej.2019.05.014.
  • McGaughy, K.; Toufiq Reza, M. Hydrothermal Carbonization of Food Waste: Simplified Process Simulation Model Based on Experimental Results. Biomass Convers. Biorefinery 2017, DOI: 10.1007/s13399-017-0276-4.
  • Cao, L.; Hui, W.; Xu, Z.; Huang, J.; Zheng, P.; Li, J.; Sun, Q. Rape Seed Shuck Derived-Lamellar Hard Carbon as Anodes for Sodium-Ion Batteries. J. Alloys Compd. 2017, 695, 632–637. DOI: 10.1016/j.jallcom.2016.11.135.
  • Wahid, M.; Puthusseri, D.; Gawli, Y.; Sharma, N.; Ogale, S. B. Hard Carbons for Sodium Ion Battery Anodes: Synthetic Strategies, Material Properties, and Storage Mechanisms. ChemSusChem 2017. DOI: 10.1002/cssc.201701664.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.