154
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Green synthesis of nanoparticles of copper and its oxides in a nanoporous carbon matrix

, , , & ORCID Icon
Pages 967-977 | Received 03 Oct 2019, Accepted 09 Oct 2019, Published online: 18 Oct 2019

References

  • Ashraf, S.; Rehman, S. U.; Sher, F.; Khalid, Z. M.; Mehmood, M.; Hussain, I. Synthesis of Cellulose–Metal Nanoparticle Composites: Development and Comparison of Different Protocols. Cellulose 2014, 21, 395–405. DOI: 10.1007/s10570-013-0129-7.
  • Wang, H.; Yu, J.; Zhao, Y.; Zhao, Y.; Guo, Q. A Facile Route for PbO@C Nanocomposites: An Electrode Candidate for Lead-Acid Batteries with Enhanced Capacitance. J. Power Sources 2013, 224, 125. DOI: 10.1016/j.jpowsour.2012.09.051.
  • Tahmasebi, E.; Masoomi, M. Y.; Yamini, Y.; Morsali, A. Application of Mechanosynthesized Azine-Decorated Zinc(II) Metal–Organic Frameworks for Highly Efficient Removal and Extraction of Some Heavy-Metal Ions from Aqueous Samples: A Comparative Study. Inorg. Chem. 2015, 54, 425. DOI: 10.1021/ic5015384.
  • Bak, W.; Kim, H. S.; Chun, H.; Yoo, W. C. Facile Synthesis of Metal/Metal Oxidenanoparticles inside a Nanoporous Carbon Matrix (M/MO@C) through the Morphology-Preserved Transformation of Metal–Organic Framework. Chem. Commun. 2015, 51, 7238–7241. DOI: 10.1039/C5CC01701G.
  • Ortega-Amayaa, R.; Matsumoto, Y.; Pérez-Guzmán, M. A.; Ortega-López, M. In Situ Synthesis of Cu2O and Cu Nanoparticles during the Thermal Reduction of Copper Foil-Supported Graphene Oxide. J. Nanopart. Res. 2015, 17, 397. DOI: 10.1007/s11051-015-3201-4..
  • Eivazihollagh, A.; Bäckström, J.; Dahlström, C.; Carlsson, F. I.; Ibrahem, I.; Lindman, B.; Edlund, H.; Norgren, M. One-Pot Synthesis of Cellulose-Templated Copper Nanoparticles with Antibacterial Properties. Mater. Lett. 2017, 187, 170–172. DOI: 10.1016/j.matlet.2016.10.026.
  • Martinez-Ruiz, A.; Alonso-Nuñez, G. New Synthesis of Cu2O and Cu Nanoparticles on Multi-Wall Carbon Nanotubes. Mater. Res. Bull. 2008, 43, 1492–1496. DOI: 10.1016/j.materresbull.2007.06.026.
  • Du, Y.; Wang, C.; Toghiani, H.; Cai, Z.; Liu, X.; Zhang, J.; Yan, Q. Synthesis of Carbon-Encapsulated Metal Nanoparticles from Wood Char. For. Prod. J. 2010, 60, 527–533. DOI: 10.13073/0015-7473-60.6.527.
  • Magdassi, S.; Grouchko, M.; Kamyshny, A. Copper Nanoparticles for Printed Electronics: Routes towards Achieving Oxidation Stability. Materials 2010, 3, 4626–4638. DOI: 10.3390/ma3094626.
  • Goswami, M.; Das, A. M. Synthesis of Cellulose Impregnated Copper Nanoparticles as an Efficient Heterogeneous Catalyst for CeN Coupling Reactions under Mild Conditions. Carbohydr. Polym. 2018, 195, 189–198. DOI: 10.1016/j.carbpol.2018.04.033.
  • Tan, Y.; Jia, Z.; Sun, J.; Wang, Y.; Cui, Z.; Guo, X. Controllable Synthesis of Hollow Copper Oxide Encapsulated into N-Doped Carbon Nanosheets as High-Stability Anodes for Lithium-Ion Batteries. J. Mater. Chem. A 2017, 5, 24139–24144. DOI: 10.1039/C7TA08236C.
  • Zhang, Q.; Zhang, K.; Xu, D.; Yang, G.; Huang, H.; Nie, F.; Liu, C.; Yang, S. CuO Nanostructures: Synthesis, Characterization, Growth Mechanisms, Fundamental Properties, and Applications. Prog. Mater. Sci. 2014, 60, 208–237. DOI: 10.1016/j.pmatsci.2013.09.003.
  • Eivazihollagh, A.; Norgren, M.; Dahlström, C.; Edlund, H. Controlled Synthesis of Cu and Cu2O NPs and Incorporation of Octahedral Cu2O NPs in Cellulose II Films. Nanomaterials 2018, 8, 238. DOI: 10.3390/nano8040238.
  • Jiao, Y.; Wan, C.; Zhang, W.; Bao, W.; Li, J. Carbon Fibers Encapsulated with Nano-Copper: A Core–Shell Structured Composite for Antibacterial and Electromagnetic Interference Shielding Applications. Nanomaterials 2019, 9, 460. DOI: 10.3390/nano9030460.
  • Thompson, E.; Danks, A. E.; Bourgeois, L.; Schnepp, Z. Iron-Catalyzed Graphitization of Biomass. Green Chem. 2015, 117, 551–556. DOI: 10.1039/C4GC01673D.
  • Glatzel, S.; Schnepp, Z.; Giordano, C. From Paper to Structured Carbon Electrodes by Inkjet Printing. Angew. Chem. Int. Ed. 2013, 52, 2355. DOI: 10.1002/anie.201207693.
  • Hoekstra, J.; Versluijs-Helder, M.; Vlietstra, E. J.; Geus, J. W.; Jenneskens, L. W. Carbon‐Supported Base Metal Nanoparticles: Cellulose at Work. ChemSusChem 2015, 8, 985–989. DOI: 10.1002/cssc.201403364.
  • Hoekstra, J.; Beale, A. M.; Soulimani, F.; Versluijs-Helder, M.; Geus, J. W.; Jenneskens, L. W. Base Metal Catalyzed Graphitization of Cellulose: A Combined Raman Spectroscopy, Temperature-Dependent X-Ray Diffraction and High-Resolution Transmission Electron Microscopy Study. J. Phys. Chem. C 2015, 119, 10653–10661. DOI: 10.1021/acs.jpcc.5b00477.
  • Zhu, H.; Shen, F.; Luo, W.; Zhu, S.; Zhao, M.; Natarajan, B.; Dai, J.; Zhou, L.; Ji, X.; Yassar, R. S.; et al. Low Temperature Carbonization of Cellulose Nanocrystals for High Performance Carbon Anode of Sodium-Ion Batteries. Nano Energy 2017, 33, 37–44. DOI: 10.1016/j.nanoen.2017.01.021.
  • Tsai, C. K.; Kang, H. Y.; Hong, C. I.; Huang, C. H.; Chang, F. C.; Wang, H. P. Preparation of Hollow Spherical Carbon Nanocages. J. Nanopart. Res. 2012, 14, 1315. DOI: 10.1007/s11051-012-1315-5.
  • Ma, B.; Huang, Y.; Zhu, C.; Chen, C.; Fan, M.; Sun, D. A Facile Method to Synthesize Carbon Coated Fe, Co and Ni and an Examination of Their Magnetic Properties. J. Alloys Compd. 2016, 687, 741–745. DOI: 10.1016/j.jallcom.2016.06.187.
  • Peternela, J.; Silva, M. F.; Vieira, M. F.; Bergamasco, R.; Vieira, A. M. S. Synthesis and Impregnation of Copper Oxide Nanoparticles on Activated Carbon through Green Synthesis for Water Pollutant Removal. Mater. Res. 2018, 21, e20160460. DOI: 10.1590/1980-5373-mr-2016-0460.
  • Muthukumar, P.; Kumar, P. S.; Anthony, S. P. Fabricating Cu, Cu2O and Hybrid Cu-Cu2O Nanoparticles in Carbon Matrix and Exploring Catalytic Activity of Oxygen and Hydrogen Evolution and Green A3-Coupling Reaction. Mater. Res. Express 2018, 6, 025518. DOI: 10.1088/2053-1591/aaf204.
  • Rosmi, M. S.; Yaakob, Y.; Yusop, M. Z. M.; Sharma, S.; Zulkifli, Z.; Supee, A.; Kalita, G.; Tanemura, M. Room Temperature Fabrication of 1D Carbon-Copper Composite Nanostructures Directly on Cu Substrate and Their Field Emission Properties. AIP Adv. 2016, 6, 095109. DOI: 10.1063/1.4962971.
  • He, J. H.; Kunitake, T.; Nakao, A. Facile in Situ Synthesis of Noble Metal Nanoparticles in Porous Cellulose Fibers. Chem. Mater. 2003, 15, 4401–4406. DOI: 10.1021/cm034720r.
  • Maneerung, T.; Tokura, S.; Rujiravanit, R. Impregnation of Silver Nanoparticles into Bacterial Cellulose for Antimicrobial Wound Dressing. Carbohydr. Polym. 2008, 72, 43–51. DOI: 10.1016/j.carbpol.2007.07.025.
  • Dallas, P.; Sharma, V. K.; Zboril, R. Silver Polymeric Nanocomposites as Advanced Antimicrobial Agents: Classification, Synthetic Paths, Applications, and Perspectives. Adv. Colloid Interface Sci. 2011, 166, 119–135. DOI: 10.1016/j.cis.2011.05.008.
  • Suárez-Cerda, J.; Espinoza-Gómez, H.; Alonso-Núñez, G.; Rivero, I. A.; Gochi-Ponce, Y.; Flores-López, L. Z. A Green Synthesis of Copper Nanoparticles Using Native Cyclodextrins as Stabilizing Agents. J. Saudi Chem. Soc. 2017, 21, 341–348. DOI: 10.1016/j.jscs.2016.10.005.
  • Zhao, X.; Tan, Y.; Wu, F.; Niu, H.; Tang, Z.; Cai, Y.; Giesy, J. P. Cu/Cu2O/CuO Loaded on the Carbon Layer Derived from Novel Precursors with Amazing Catalytic Performance. Sci. Total Environ. 2016, 571, 380–387. DOI: 10.1016/j.scitotenv.2016.05.151.
  • Chen, F. L.; Letortu, A.; Liao, C. Y.; Tsai, C. K.; Huang, H. L.; Sun, I. W.; Wei, Y. L.; Wang, H. P. Cu@C Nanoparticles Dispersed RTILs Used in the DSSC Electrolyte. Nucl. Instrum. Methods Phys. Res. Sect. A 2010, 619, 112–114. DOI: 10.1016/j.nima.2010.02.075.
  • Miao, L.; Wang, C.; Hou, J.; Wang, P.; Ao, Y.; Li, Y.; Geng, N.; Yao, Y.; Lv, B.; Yang, Y.; et al. Aggregation and Removal of Copper Oxide (CuO) Nanoparticles in Wastewater Environment and Their Effects on the Microbial Activities of Wastewater Biofilms. Bioresour. Technol. 2016, 216, 537–544. DOI: 10.1016/j.biortech.2016.05.082.
  • Sanchez, C.; Rozes, L.; Ribot, F.; Laberty-Robert, C.; Grosso, D.; Sassoye, C.; Boissiere, C.; Nicole, L. Chimie Douce: A Land of Opportunities for the Designed Construction of Functional Inorganic and Hybrid Organic-Inorganic Nanomaterials. C.R. Chim. 2010, 1, 3–39. DOI: 10.1016/j.crci.2009.06.001.
  • Kumar, R. V.; Mastai, Y.; Diamant, Y.; Gedanken, A. Sonochemical Synthesis of Amorphous Cu and Nanocrystalline Cu2O Embedded in a Polyaniline Matrix. J. Mater. Chem. 2001, 11, 1209–1213. DOI: 10.1039/b005769j.
  • Liu, Q.; Liang, Y.; Liu, H.; Hong, J.; Xu, Z. Solution Phases Synthesis of CuO Nanorods. Mater. Chem. Phys. 2006, 98, 519–522. DOI: 10.1016/j.matchemphys.2005.09.073.
  • Wang, H.; Xu, J.-Z.; Zhu, J.-J.; Chen, H.-Y. Preparation of Copper Oxide Nanoparticles by Microwave Irradiation. J. Cryst. Growth 2002, 244, 88–99. DOI: 10.1016/S0022-0248(02)01571-3.
  • Jacob, D. S.; Genish, I.; Klein, L.; Gedanken, A. Carbon-Coated Core Shell Structured Copper and Nickel Nanoparticles Synthesized in an Ionic Liquid. J. Phys. Chem. B 2006, 110, 17711–17714. DOI: 10.1021/jp063842e.
  • Debbarma, M.; Sutradhar, P.; Saha, M. Synthesis of Cu2O Nanoparticles and Current–Voltage Measurements (I-V) of Its Nanocomposites. Nanotechnol. Environ. Eng. 2016, 1, 6. DOI: 10.1007/s41204-016-0006-3.
  • Meng, Z.; Xiaodang, X.; Millin, Z. Hydrothermal Synthesis of Sheaf Like CuO via Ionic Solids. Mater. Lett. 2008, 62, 385–388. DOI: 10.1016/j.matlet.2007.05.046.
  • Zhou, R. M.; Wu, X. F.; Hao, X. F.; Zhou, F.; Li, H. B.; Rao, W. H. Influences of Surfactants on the Preparation of Copper Nanoparticles by Electron Beam Irradiation. Nucl. Instrum. Methods Phys. Res. Sect. B 2008, 266, 599–603. DOI: 10.1016/j.nimb.2007.11.040.
  • Shah, M. A.; Al-Ghamdi, M. S. Preparation of Copper (Cu) and Copper Oxide (Cu2O) Nanoparticles under Supercritical Conditions. Mater. Sci. Appl. 2011, 2, 977–980. DOI: 10.4236/msa.2011.28131.
  • Foresti, M. L.; Vázquez, A.; Boury, B. Applications of Bacterial Cellulose as Precursor of Carbon and Composites with Metal Oxide, Metal Sulfide and Metal Nanoparticles: A Review of Recent Advances. Carbohydr. Polym. 2017, 157, 447–467. DOI: 10.1016/j.carbpol.2016.09.008.
  • Hoekstra, J.; Beale, A. M.; Soulimani, F.; Versluijs-Helder, M.; van de Kleut, D.; Koelewijn, J. M.; Geus, J. W.; Jenneskens, L. W. The Effect of Iron Catalyzed Graphitization on the Textural Properties of Carbonized Cellulose: Magnetically Separable Graphitic Carbon Bodies for Catalysis and Remediation. Carbon 2016, 107, 248–260. DOI: 10.1016/j.carbon.2016.05.065.
  • McSweeny, J. D.; Rowell, R. M.; Min, S.-H. Effect of Citric Acid Modification of Aspen Wood on Sorption of Copper Ion. J. Nat. Fibers 2006, 3, 43–58. DOI: 10.1300/J395v03n01_05.
  • Vaughan, T.; Seo, C. W.; Marshall, W. E. Removal of Selected Metal Ions from Aqueous Solution Using Modified Corncobs. Bioresour. Technol. 2001, 78, 133–139. DOI: 10.1016/S0960-8524(01)00007-4.
  • Wang, S.; Chen, J.; Yang, G.; Chen, K.; Yang, R.; Zeng, J. Microstructure Properties and Cellulase Hydrolysis Efficiency of Hybrid Pennisetum with [Amim]Cl Pretreatment. BioResources 2017, 12, 1031–1040. DOI: 10.15376/biores.12.1.1031-1040.
  • Yang, H.; Yan, R.; Chen, H.; Lee, D. H.; Zheng, C. Characteristics of Hemicellulose, Cellulose and Lignin Pyrolysis. Fuel 2007, 86, 1781–1788. DOI: 10.1016/j.fuel.2006.12.013.
  • Cady, N. C.; Behnke, J. L.; Strickland, A. D. Copper-Based Nanostructured Coatings on Natural Cellulose: Nanocomposites Exhibiting Rapid and Efficient Inhibition of a Multi-Drug Resistant Wound Pathogen, A. baumannii, and Mammalian Cell Biocompatibility In Vitro. Adv. Funct. Mater. 2011, 21, 2506–2514. DOI: 10.1002/adfm.201100123.
  • Tan, H.; Ma, C.; Gao, L.; Li, Q.; Song, Y.; Xu, F.; Wang, T.; Wang, L. Metal–Organic Framework-Derived Copper Nanoparticle@Carbon Nanocomposites as Peroxidase Mimics for Colorimetric Sensing of Ascorbic Acid. Chem. Eur. J. 2014, 20, 16377–16383. DOI: 10.1002/chem.201404960.
  • Sharma, S.; Sharma, R.; Sharma, A. K. Synthesis, Characterization, and Thermal Degradation of Cu (II) Surfactants for Sustainable Green Chemistry. Asian J. Green Chem. 2017, 1, 130–141. DOI: 10.22631/ajgc.2017.95559.1015.
  • Zhang, Y.; Xing, W.; Liu, S.; Liu, Y.; Yang, M.; Zhao, J.; Song, Y. Pure Methane, Carbon Dioxide, and Nitrogen Adsorption on Anthracite from China over a Wide Range of Pressures and Temperatures: experiments and Modeling. RSC Adv. 2015, 5, 52612–52623. DOI: 10.1039/C5RA05745K.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.