150
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Spatial-induced antiferromagnetic-like interaction of gadofullerene incarcerated in metal-organic-framework matrix

, , , , , , & show all
Pages 353-360 | Received 21 Oct 2019, Accepted 22 Oct 2019, Published online: 01 Nov 2019

References

  • Rocha, A. R.; Garcia-Suarez, V. M.; Bailey, S. W.; Lambert, C. J.; Ferrer, J.; Sanvito, S. Towards Molecular Spintronics. Nat. Mater. 2005, 4, 335.
  • Bogani, L.; Wernsdorfer, W. Molecular Spintronics Using Single-Molecule Magnets. Nat. Mater. 2008, 7, 179.
  • Jiang, Z.; Chang, C.-Z.; Masir, M. R.; Tang, C.; Xu, Y.; Moodera, J. S.; MacDonald, A. H.; Shi, J. Enhanced Spin Seebeck Effect Signal Due to Spin-Momentum Locked Topological Surface States. Nat. Commun. 2016, 7, 11458.
  • Bindel, J. R.; Pezzotta, M.; Ulrich, J.; Liebmann, M.; Sherman, E. Y.; Morgenstern, M. Probing Variations of the Rashba Spin–Orbit Coupling at the Nanometre Scale. Nat. Phys. 2016, 12, 920.
  • Esquinazi, P.; Spemann, D.; Höhne, R.; Setzer, A.; Han, K.-H.; Butz, T. Induced Magnetic Ordering by Proton Irradiation in Graphite. Phys. Rev. Lett. 2003, 91, 227201DOI: 10.1103/PhysRevLett.91.227201.
  • Aulakh, D.; Liu, L.; Varghese, J. R.; Xie, H.; Islamoglu, T.; Duell, K.; Kung, C.-W.; Hsiung, C.-E.; Zhang, Y.; Drout, R. J.; et al. Direct Imaging of Isolated Single-Molecule Magnets in Metal–Organic Frameworks. J. Am. Chem. Soc. 2019, 141, 2997–3005. DOI: 10.1021/jacs.8b11374.
  • Clemente-León, M.; Coronado, E.; Forment-Aliaga, A.; Amorós, P.; Ramírez-Castellanos, J.; González-Calbet, J. M. Incorporation of Mn12 Single Molecule Magnets into Mesoporous Silica. J. Mater. Chem. 2003, 13, 3089–3095. DOI: 10.1039/B310408G.
  • Coradin, T.; Larionova, J.; Smith, A. A.; Rogez, G.; Clérac, R.; Guérin, C.; Blondin, G.; Winpenny, R. E.; Sanchez, C.; Mallah, T. Magnetic Nanocomposites Built by Controlled Incorporation of Magnetic Clusters into Mesoporous Silicates. Adv. Mater. 2002, 14, 896–898.
  • Sato, O.; Tao, J.; Zhang, Y. Z. Control of Magnetic Properties through External Stimuli. Angew. Chem. Int. Ed. 2007, 46, 2152–2187.
  • Tuček, J.; Błoński, P.; Ugolotti, J.; Swain, A. K.; Enoki, T.; Zbořil, R. Emerging Chemical Strategies for Imprinting Magnetism in Graphene and Related 2D Materials for Spintronic and Biomedical Applications. Chem. Soc. Rev. 2018, 47, 3899. DOI: 10.1039/C7CS00288B.
  • Esquinazi, P.; Setzer, A.; Höhne, R.; Semmelhack, C.; Kopelevich, Y.; Spemann, D.; Butz, T.; Kohlstrunk, B.; Lösche, M. Ferromagnetism in Oriented Graphite Samples. Phys. Rev. B. 2002, 66, 024429. DOI: 10.1103/PhysRevB.66.024429.
  • Woo, S.; Litzius, K.; Krüger, B.; Im, M.-Y.; Caretta, L.; Richter, K.; Mann, M.; Krone, A.; Reeve, R. M.; Weigand, M.; et al. Observation of Room-Temperature Magnetic Skyrmions and Their Current-Driven Dynamics in Ultrathin Metallic Ferromagnets. Nat. Mater. 2016, 15, 501.
  • Červenka, J.; Katsnelson, M.; Flipse, C. Room-Temperature Ferromagnetism in Graphite Driven by Two-Dimensional Networks of Point Defects. Nat. Phys. 2009, 5, 840. DOI: 10.1038/nphys1399.
  • Makarova, T. L.; Han, K.-H.; Esquinazi, P.; Da Silva, R.; Kopelevich, Y.; Zakharova, I.; Sundqvist, B. Magnetism in Photopolymerized Fullerenes. Carbon 2003, 41, 1575–1584. DOI: 10.1016/S0008-6223(03)00082-4.
  • Ma, Y.; Lu, Y.; Yi, J.; Feng, Y.; Herng, T.; Liu, X.; Gao, D.; Xue, D.; Xue, J.; Ouyang, J. Room Temperature Ferromagnetism in Teflon Due to Carbon Dangling Bonds. Nat. Commun. 2012, 3, 727.
  • Lyubutin, I. S. e.; Gavriliuk, A. G. e.; Struzhkin, V.; Ovchinnikov, S. G. e.; Kharlamova, S.; Bezmaternykh, L. N.; Hu, M.; Chow, P. Pressure-Induced Electron Spin Transition in the Paramagnetic Phase of the GdFe3(BO3)4 Heisenberg Magnet. JETP Lett. 2007, 84, 518–523. DOI: 10.1134/S0021364006210119.
  • Kawakami, T.; Tsujimoto, Y.; Kageyama, H.; Chen, X.-Q.; Fu, C. L.; Tassel, C.; Kitada, A.; Suto, S.; Hirama, K.; Sekiya, Y.; et al. Spin Transition in a Four-Coordinate Iron Oxide. Nat. Chem. 2009, 1, 371–376. DOI: 10.1038/nchem.289.
  • Makarova, T. L.; Shelankov, A. L.; Serenkov, I.; Sakharov, V.; Boukhvalov, D. Anisotropic Magnetism of Graphite Irradiated with Medium-Energy Hydrogen and Helium Ions. Phys. Rev. B 2011, 83, 085417. DOI: 10.1103/PhysRevB.83.085417.
  • Han, K. H.; Spemann, D.; Esquinazi, P.; Höhne, R.; Riede, V.; Butz, T. Ferromagnetic Spots in Graphite Produced by Proton Irradiation. Adv. Mater. 2003, 15, 1719–1722. DOI: 10.1002/adma.200305194.
  • Talapatra, S.; Ganesan, P.; Kim, T.; Vajtai, R.; Huang, M.; Shima, M.; Ramanath, G.; Srivastava, D.; Deevi, S.; Ajayan, P. Irradiation-Induced Magnetism in Carbon Nanostructures. Phys. Rev. Lett. 2005, 95, 097201. DOI: 10.1103/PhysRevLett.95.097201.
  • Mathew, S.; Satpati, B.; Joseph, B.; Dev, B.; Nirmala, R.; Malik, S.; Kesavamoorthy, R. Magnetism in C60 Films Induced by Proton Irradiation. Phys. Rev. B 2007, 75, 075426. DOI: 10.1103/PhysRevB.75.075426.
  • He, Z.; Yang, X.; Xia, H.; Zhou, X.; Zhao, M.; Song, Y.; Wang, T. Enhancing the Ferromagnetization of Graphite by Successive 12C+ Ion Implantation Steps. Carbon 2011, 49, 1931–1938. DOI: 10.1016/j.carbon.2011.01.018.
  • Xia, H.; Li, W.; Song, Y.; Yang, X.; Liu, X.; Zhao, M.; Xia, Y.; Song, C.; Wang, T. ‐W.; Zhu, D.; et al. Tunable Magnetism in Carbon-Ion-Implanted Highly Oriented Pyrolytic Graphite. Adv. Mater. 2008, 20, 4679–4683. DOI: 10.1002/adma.200801205.
  • Nair, R.; Tsai, I.-L.; Sepioni, M.; Lehtinen, O.; Keinonen, J.; Krasheninnikov, A.; Neto, A. C.; Katsnelson, M.; Geim, A.; Grigorieva, I. Dual Origin of Defect Magnetism in Graphene and Its Reversible Switching by Molecular Doping. Nat. Commun. 2013, 4, 2010.
  • Han, K.-H.; Talyzin, A.; Dzwilewski, A.; Makarova, T.; Höhne, R.; Esquinazi, P.; Spemann, D.; Dubrovinsky, L. S. Magnetic Properties of Carbon Phases Synthesized Using High-Pressure High-Temperature Treatment. Phys. Rev. B 2005, 72, 224424. DOI: 10.1103/PhysRevB.72.224424.
  • Yang, X.; Xia, H.; Qin, X.; Li, W.; Dai, Y.; Liu, X.; Zhao, M.; Xia, Y.; Yan, S.; Wang, B. Correlation between the Vacancy Defects and Ferromagnetism in Graphite. Carbon 2009, 47, 1399–1406. DOI: 10.1016/j.carbon.2009.01.032.
  • Wang, Y.; Li, L.; Prucnal, S.; Chen, X.; Tong, W.; Yang, Z.; Munnik, F.; Potzger, K.; Skorupa, W.; Gemming, S.; et al. Disentangling Defect-Induced Ferromagnetism in SiC. Phys. Rev. B 2014, 89, 014417. DOI: 10.1103/PhysRevB.89.014417.
  • Bao, L.; Peng, P.; Lu, X. Bonding inside and outside Fullerene Cages. Acc. Chem. Res. 2018, 51, 810–815. DOI: 10.1021/acs.accounts.8b00014.
  • Popov, A. A.; Dunsch, L. Electrochemistry in Cavea: Endohedral Redox Reactions of Encaged Species in Fullerenes. J. Phys. Chem. Lett. 2011, 2, 786–794. DOI: 10.1021/jz200063k.
  • Popov, A. A.; Yang, S.; Dunsch, L. Endohedral Fullerenes. Chem. Rev. 2013, 113, 5989–6113. DOI: 10.1021/cr300297r.
  • Cong, H.; Yu, B.; Akasaka, T.; Lu, X. Endohedral Metallofullerenes: An Unconventional Core–Shell Coordination Union. Coordin. Chem. Rev. 2013, 257, 2880–2898. DOI: 10.1016/j.ccr.2013.05.020.
  • Lu, X.; Bao, L.; Akasaka, T.; Nagase, S. Recent Progress in the Chemistry of Endohedral Metallofullerenes. Chem. Commun. 2014, 50, 14701–14715. DOI: 10.1039/C4CC05164E.
  • Wolf, M.; Müller, K.-H.; Skourski, Y.; Eckert, D.; Georgi, P.; Krause, M.; Dunsch, L. Magnetic Moments of the Endohedral Cluster Fullerenes Ho3N@C80 and Tb3N@C80: The Role of Ligand Fields. Angew. Chem. Int. Ed. 2005, 44, 3306–3309. DOI: 10.1002/anie.200461500.
  • Hu, Z.; Dong, B.-W.; Liu, Z.; Liu, J.-J.; Su, J.; Yu, C.; Xiong, J.; Shi, D.-E.; Wang, Y.; Wang, B.-W.; et al. Endohedral Metallofullerene as Molecular High Spin Qubit: Diverse Rabi Cycles in Gd2@C79N. J. Am. Chem. Soc. 2018, 140, 1123–1130. DOI: 10.1021/jacs.7b12170.
  • Zhang, J.; Ye, Y.; Chen, Y.; Pregot, C.; Li, T.; Balasubramaniam, S.; Hobart, D. B.; Zhang, Y.; Wi, S.; Davis, R. M.; et al. Gd3N@C84(OH)x: A New Egg-Shaped Metallofullerene Magnetic Resonance Imaging Contrast Agent. J. Am. Chem. Soc. 2014, 136, 2630–2636. DOI: 10.1021/ja412254k.
  • Velkos, G.; Krylov, D.; Kirkpatrick, K.; Liu, X.; Spree, L.; Wolter, A.; Büchner, B.; Dorn, H.; Popov, A. Giant Exchange Coupling and Field-Induced Slow Relaxation of Magnetization in Gd2@C79N with a Single-Electron Gd–Gd Bond. Chem. Commun. 2018, 54, 2902–2905. DOI: 10.1039/C8CC00112J.
  • Hermanns, C. F.; Bernien, M.; Krüger, A.; Schmidt, C.; Waßerroth, S. T.; Ahmadi, G.; Heinrich, B. W.; Schneider, M.; Brouwer, P. W.; Franke, K. J.; et al. Magnetic Coupling of Gd3N@C80 Endohedral Fullerenes to a Substrate. Phys. Rev. Lett. 2013, 111, 167203. DOI: 10.1103/PhysRevLett.111.167203.
  • Svitova, A.; Krupskaya, Y.; Samoylova, N.; Kraus, R.; Geck, J.; Dunsch, L.; Popov, A. Magnetic Moments and Exchange Coupling in Nitride Clusterfullerenes GdxSc3–xN@C80 (x= 1–3). Dalton Trans. 2014, 43, 7387–7390. DOI: 10.1039/c3dt53367k.
  • Liu, F.; Krylov, D. S.; Spree, L.; Avdoshenko, S. M.; Samoylova, N. A.; Rosenkranz, M.; Kostanyan, A.; Greber, T.; Wolter, A. U.; Büchner, B. Single Molecule Magnet with an Unpaired Electron Trapped between Two Lanthanide Ions inside a Fullerene. Nat. Commun. 2017, 8, 16098.
  • Brandenburg, A.; Krylov, D. S.; Beger, A.; Wolter, A. U.; Büchner, B.; Popov, A. A. Carbide Clusterfullerene DyYTiC@C80 Featuring Three Different Metals in the Endohedral Cluster and Its Single-Ion Magnetism. Chem. Commun. 2018, 54, 10683–10686. DOI: 10.1039/C8CC04736G.
  • Dreiser, J.; Westerström, R.; Zhang, Y.; Popov, A. A.; Dunsch, L.; Krämer, K.; Liu, S. X.; Decurtins, S.; Greber, T. The Metallofullerene Field-Induced Single-Ion Magnet HoSc2 N@C80. Chemistry 2014, 20, 13536–13540. DOI: 10.1002/chem.201403042.
  • Westerström, R.; Dreiser, J.; Piamonteze, C.; Muntwiler, M.; Weyeneth, S.; Brune, H.; Rusponi, S.; Nolting, F.; Popov, A.; Yang, S.; et al. An Endohedral Single-Molecule Magnet with Long Relaxation Times: DySc2N@C80. J. Am. Chem. Soc. 2012, 134, 9840–9843. DOI: 10.1021/ja301044p.
  • Krylov, D.; Liu, F.; Brandenburg, A.; Spree, L.; Bon, V.; Kaskel, S.; Wolter, A.; Büchner, B.; Avdoshenko, S.; Popov, A. Magnetization Relaxation in the Single-Ion Magnet DySc2N@C80: Quantum Tunneling, Magnetic Dilution, and Unconventional Temperature Dependence. Phys. Chem. Chem. Phys. 2018, 20, 11656–11672. DOI: 10.1039/C8CP01608A.
  • Westerström, R.; Dreiser, J.; Piamonteze, C.; Muntwiler, M.; Weyeneth, S.; Krämer, K.; Liu, S.-X.; Decurtins, S.; Popov, A.; Yang, S.; et al. Tunneling, Remanence, and Frustration in Dysprosium-Based Endohedral Single-Molecule Magnets. Phys. Rev. B 2014, 89, 060406. DOI: 10.1103/PhysRevB.89.060406.
  • Nakanishi, R.; Satoh, J.; Katoh, K.; Zhang, H.; Breedlove, B. K.; Nishijima, M.; Nakanishi, Y.; Omachi, H.; Shinohara, H.; Yamashita, M. DySc2N@C80 Single-Molecule Magnetic Metallofullerene Encapsulated in a Single-Walled Carbon Nanotube. J. Am. Chem. Soc. 2018, 140, 10955–10959. DOI: 10.1021/jacs.8b06983.
  • Chen, C.-H.; Krylov, D. S.; Avdoshenko, S. M.; Liu, F.; Spree, L.; Westerström, R.; Bulbucan, C.; Studniarek, M.; Dreiser, J.; Wolter, A. U. B.; et al. Magnetic Hysteresis in Self-Assembled Monolayers of Dy-Fullerene Single Molecule Magnets on Gold. Nanoscale 2018, 10, 11287–11292. DOI: 10.1039/C8NR00511G.
  • Avdoshenko, S. M.; Fritz, F.; Schlesier, C.; Kostanyan, A.; Dreiser, J.; Luysberg, M.; Popov, A. A.; Meyer, C.; Westerström, R. Partial Magnetic Ordering in One-Dimensional Arrays of Endofullerene Single-Molecule Magnet Peapods. Nanoscale 2018, 10, 18153–18160. DOI: 10.1039/C8NR05386C.
  • Anja, U. Strong Carbon Cage Influence on the Single Molecule Magnetism in Dy–Sc Nitride Clusterfullerenes. Chem. Commun. 2018, 54, 9730–9733.
  • Ito, Y.; Fujita, W.; Okazaki, T.; Sugai, T.; Awaga, K.; Nishibori, E.; Takata, M.; Sakata, M.; Shinohara, H. Magnetic Properties and Crystal Structure of Solvent-Free Sc@C82 Metallofullerene Microcrystals. ChemPhysChem 2007, 8, 1019–1024. DOI: 10.1002/cphc.200700097.
  • Feng, Y.; Wang, T.; Li, Y.; Li, J.; Wu, J.; Wu, B.; Jiang, L.; Wang, C. Steering Metallofullerene Electron Spin in Porous Metal–Organic Framework. J. Am. Chem. Soc. 2015, 137, 15055–15060. DOI: 10.1021/jacs.5b10796.
  • Cao, J.; Feng, Y.; Zhou, S.; Sun, X.; Wang, T.; Wang, C.; Li, H. Spatial Aromatic Fences of Metal–Organic Frameworks for Manipulating the Electron Spin of a Fulleropyrrolidine Nitroxide Radical. Dalton Trans. 2016, 45, 11272–11276. DOI: 10.1039/C6DT01735E.
  • Meng, H.; Zhao, C.; Li, Y.; Nie, M.; Wang, C.; Wang, T. An Implanted Paramagnetic Metallofullerene Probe within a Metal–Organic Framework. Nanoscale 2018, 10, 3291–3298. DOI: 10.1039/C7NR09420E.
  • Zhao, C.; Meng, H.; Nie, M.; Jiang, L.; Wang, C.; Wang, T. Anisotropic Paramagnetic Properties of Metallofullerene Confined in a Metal–Organic Framework. J. Phys. Chem. C 2018, 122, 4635–4640. DOI: 10.1021/acs.jpcc.7b11353.
  • Meng, H.; Zhao, C.; Nie, M.; Wang, C.; Wang, T. Optically Controlled Molecular Metallofullerene Magnetism via an Azobenzene-Functionalized Metal–Organic Framework. ACS Appl. Mater. Interfaces 2018, 10, 32607–32612. DOI: 10.1021/acsami.8b11098.
  • Li, T.; Murphy, S.; Kiselev, B.; Bakshi, K. S.; Zhang, J.; Eltahir, A.; Zhang, Y.; Chen, Y.; Zhu, J.; Davis, R. M.; et al. A New Interleukin-13 Amino-Coated Gadolinium Metallofullerene Nanoparticle for Targeted MRI Detection of Glioblastoma Tumor Cells. J. Am. Chem. Soc 2015, 137, 7881–7888.
  • Liu, Y.; Chen, C.; Qian, P.; Lu, X.; Sun, B.; Zhang, X.; Wang, L.; Gao, X.; Li, H.; Chen, Z. Gd-Metallofullerenol Nanomaterial as Non-Toxic Breast Cancer Stem Cell-Specific Inhibitor. Nat. Commun. 2015, 6, 5988.
  • Feng, Y.; Li, J.; Zhang, Z.; Wu, B.; Li, Y.; Jiang, L.; Wang, C.; Wang, T. A Highly Soluble Gadofullerene Salt and Its Magnetic Properties. Dalton Trans. 2015, 44, 7781–7784. DOI: 10.1039/C5DT00432B.
  • Suzuki, M.; Lu, X.; Sato, S.; Nikawa, H.; Mizorogi, N.; Slanina, Z.; Tsuchiya, T.; Nagase, S.; Akasaka, T. Where Does the Metal Cation Stay in Gd@C2v(9)-C82? A Single-Crystal X-Ray Diffraction Study. Inorg. Chem 2012, 51, 5270–5273.
  • Nuttall, C.; Inada, Y.; Nagai, K.; Iwasa, Y. Low-Temperature Bistability in the Magnetic Properties of Solvent-Including Lanthanide Metallofullerene Crystals. Phys. Rev. B 2000, 62, 8592. DOI: 10.1103/PhysRevB.62.8592.
  • Huang, H.; Yang, S.; Zhang, X. Magnetic Properties of Heavy Rare-Earth Metallofullerenes M@C82 (M = Gd, Tb, Dy, Ho, and Er). J. Phys. Chem. B 2000, 104, 1473–1482. DOI: 10.1021/jp9933166.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.